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Fig. 1: The URDFormer predicts realistic, kinematic scenes from images that 1) allow for zero-shot real-to-sim-to-real transfer through targeted
randomization, and 2) generate internet-scale simulation assets valuable to a multitude of applications.

Abstract—Constructing accurate and targeted simulation
scenes that are both visually and physically realistic is a problem
of significant practical interest in domains ranging from robotics
to computer vision. This problem has become even more relevant
as researchers wielding large data-hungry learning methods
seek new sources of training data for physical decision-making
systems. However, building simulation models is often still done
by hand - a graphic designer and a simulation engineer work
with predefined assets to construct rich scenes with realistic
dynamic and kinematic properties. While this may scale to small
numbers of scenes, to achieve the generalization properties that
are required for data-driven robotic control, we require a pipeline
that is able to synthesize large numbers of realistic scenes,
complete with “natural” kinematic and dynamic structure. To
attack this problem, we develop models for inferring structure
and generating simulation scenes from natural images, allowing
for scalable scene generation from web-scale datasets. To train
these image-to-simulation models, we show how controllable text-
to-image generative models can be used in generating paired
training data that allows for modeling of the inverse problem,
mapping from realistic images back to complete scene models. We
show how this paradigm allows us to build large datasets of scenes

in simulation with semantic and physical realism. We present an
integrated end-to-end pipeline that generates simulation scenes
complete with articulated kinematic and dynamic structures from
real-world images and use these for training robotic control
policies. We then robustly deploy in the real world for tasks
like articulated object manipulation. In doing so, our work
provides both a pipeline for large-scale generation of simulation
environments and an integrated system for training robust
robotic control policies in the resulting environments.

I. INTRODUCTION

Simulation has become a cornerstone of a plethora of
applied machine learning problems - from the natural sciences
such as physics, chemistry, and biology [1, 2] to robotics
[3, 4] and computer vision [5, 6]. Simulation allows for
scalable and cheap data collection while providing an easy
way to encode domain-specific prior knowledge into end-to-
end machine learning problems. This is particularly important
for data-scarce problems such as robotics, where collecting
real data can lead to costly and unsafe failures or may require
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expensive human supervision. Critical to each of these endeav-
ors is a rich and accurate simulation environment, complete
with assets depicting complex scene layouts and kinematic
structure. For instance, advances in robotic mobile manipula-
tion in the Habitat simulator [7], are critically dependent on the
Matterport dataset for realistic scenes [8]. The creation and
curation of these simulation scenes and assets is an important
but often overlooked part of the process.

The most common approaches for generating simulation
content are either manual [9, 10], procedural [11] or, more
recently, purely generative [12, 13, 14, 15, 16]. The manual
process for creating simulation scenes requires a designer to
characterize, identify, and model a particular real-world scene,
a painstaking and impractical process. While this approach can
produce high quality results, it often leads to content that lacks
diversity due to the amount of human effort required. On the
other hand, rule-based procedural generation methods [11, 17]
have been applied in robotics applications such as navigation,
but often struggle to capture the natural complexity of the
real world for problems such as manipulation. Moreover,
the procedural generation process is not controllable, making
it hard to generate simulation content corresponding to a
particular real-world environment, which is often important
in real-world robotic learning pipelines. Recently introduced
generative methods for content creation [12, 15, 16, 13] can
generate visually appealing 3-D geometries for particular ob-
jects, but often result in undesired physical simulation behavior
and lack kinematic structure like articulation.

What are the desiderata for a content creation method for
simulation? To enable a variety of downstream use cases such
as robotic learning, scalable content creation in simulation
must be (1) realistic enough such that machine learning models
trained in the constructed simulation environments transfer
back to the real world, (2) diverse in a way that captures
the statistics of natural environments so as to enable learning
generalizable models and policies (3) controllable in a way that
allows for targeted generation of particular scenes of interest.

To generate content of this nature, we develop a pipeline
to train a transformer-based network, URDFormer, that maps
directly from individual real-world images to corresponding
simulation content (expressed as a Unified Robot Description
File (URDF)) that could plausibly represent the semantics,
kinematics, and structure of the scene (Fig1). We leverage
controllable text-to-image generative models [18] to generate
a large-scale paired dataset of structured simulation scenes and
closely corresponding, realistic images. This paired dataset is
then inverted to train URDFormer, which maps from RGB
images directly to plausible simulation environments with
semantic and kinematic structure.

URDFormer can then naturally be used in several use cases
— (1) diverse content generation for simulation: generating a
large and diverse set of realistic simulation environments that
correspond directly to uncurated, real-world RGB images (e.g
scraped off the web), or (2) targeted generation: generating
a simulation environment (or narrow distribution of environ-
ments) corresponding to a particular set of desired images. We
show that the generated simulation environments are a useful

tool for robotic learning in a real-to-sim-to-real pipeline for
training robotic control policies.

II. URDFORMER - A PIPELINE FOR SCALABLE CONTENT
CREATION FOR SIMULATION FROM REAL-WORLD IMAGES

Generating simulated scenes with a high degree of visual
realism that supports rich kinematic and dynamic structure,
while reflecting the natural statistics of the real world is a
challenging problem. Downstream applications in robotics and
computer vision typically require data that is simultaneously
realistic, diverse, and controllable.

To accomplish these requirements, we attempt to generate
rich kinematic scenes directly from RGB images, so that we
can use either a large web-scale dataset of images harvested
from the internet to generate a large number of realistic scenes,
or a small number of domain-specific images to train robot
models for more specific targeted environments. Unfortunately,
no large dataset containing images along with corresponding
articulated scene descriptions is publicly available to train
such a model. We address this by building a new dataset
using generative image models to enhance the visual quality
of synthetic renders of procedurally sampled scenes. This
process requires us to reason about two distinct pipelines. The
forward pipeline takes a procedurally sampled environment,
renders it, and augments the resulting images with a generative
model to produce a dataset of scene/image pairs. The second
inverse pipeline then trains a model which takes in the images
produced in the forward pipeline and produces the kinematic
scene description that was used to create it.

Once the inverse model is trained, it allows for scene gener-
ation that is realistic since it can be used to build scenes that
correspond to real images. The generated scenes are diverse
since large web-scale image datasets with diverse content can
be used to seed this generation process. Lastly, the generation
is controllable since curated images of particular target en-
vironments can be used to generate corresponding simulation
assets. We first define the inverse problem of synthetic scene
generation from real-world images, then describe how to learn
inverse models to solve this problem with supervised learning
on a paired dataset generated using controllable text-to-image
generative models [18]. Finally, we show how the learned
inverse model can be used with real-world image datasets
for scalable content creation. This tool can then be used to
instantiate a real-to-simulation-real pipeline for robot learning,
as described in Section III.

A. Problem Formulation
To formalize the problem of simulation scene generation

from real-world images, let us consider a kinematic scene
description z drawn from a target scene distribution P (z) in
the real world. For our purposes, the scene can be described as
a list of objects z = {o1 . . . on}, where each object oi contains
a base class label ci, a 3D bounding box bi ∈ R6, a 3D
transform Ti ∈ SE(3), a kinematic parent pi ∈ [1 . . . i−1] and
a joint type ji that specifies how that object can move relative
to its parent oi = (ci, bi, Ti, pi, ji). This resembles the typical
representation of scenes and robots using the unified robot
description format (URDF). Let’s consider a kitchen scenario



Fig. 2: The URDFormer is trained on a large paired dataset of
simulation assets and realistic renderings (forward). During

inference, this process is inverted and it predicts the URDF from a
real image (inverse).

that contains a row of cabinets next to a stove. The cabinets
and the stove will be the kinematic children of the wall, and
the kinematic parents of their respective doors. Similarly, these
doors will be the kinematic parents of their handles. As the
example shows, the kinematic structure z for a particular real-
world scenario is unknown without extensive human labeling
effort, and instead, we only have access to the result x of
an indirect “forward” function f , x = f(z). For example, x
could be a photograph of the real environment, or a point
cloud captured with a LIDAR scanner. The goal of this work
is to recover the entire kinematic and semantic structure of
the scene from just having access to the forward evaluation x,
requiring complete inference of a rich scene representation z.

Unfortunately, since the scene structure z is unknown for
most complex real-world scenes and difficult to generate
manually, it is challenging to solve the “inverse” generation
problem to infer the scene description z from the forward ren-
dered images (or alternative sensor readings) x, z = f−1(x).
Had there been a sizeable dataset D = {(zi, xi)}Ni=1 of scene
descriptors zi in simulation and their corresponding real-world
counterparts xi, the inverse problem could be solved using
supervised learning (minimizing a loss L like the cross entropy
loss or a MSE loss) to learn an f−1

θ that approximates the
scene structure ẑ given an input forward-rendered image x.

However, such a paired dataset does not readily exist,
making direct application of supervised learning methods chal-
lenging. In this work we take an inversion through synthesis
approach—leveraging pre-trained generative models to convert
procedurally generated scenes in simulation into a large paired
dataset of scene content z and corresponding realistic RGB
images x. This process can generate a large and diverse dataset
of image and scene-description (x, z) pairs that we can use
to train an approximate inverse model f−1

θ (x) that generates
scene descriptions ẑ from real RGB images x. Since most
scenes that we consider are object-centric, we decompose the
inverse problem into two parts: (1) object-level prediction that
focuses on the kinematic structure of individual objects, e.g.,
cabinets, and (2) global-scene prediction, e.g., kitchens, that
focuses on the structure of an overall scene. We next discuss
the process of generating a large paired dataset for these two
components (Section II-B) and then show the training process
for the inverse model in detail (Section II-C).

B. Controlled Generation of Paired Datasets with Pretrained
Generative Models

Given a simulated scene z (drawn from a dataset such
as PartNet [19], or procedurally generated), we use the fact
that controllable generative models [18] are both diverse and
realistic enough to take an unrealistic simulation rendering of
a scene and generate a distribution of corresponding realistic
images. This allows the scene in simulation with unrealistic
appearance and texture to be translated into a diverse set
of visually realistic images that plausibly match the same
underlying environment, as shown on the left side of Figure 2.
To ensure piecewise consistency and realism of the generated
images, we use two different dataset generation techniques
for the global scene structure and local object structure re-
spectively. These share the same conceptual ideas but differ
to account for consistency properties in each case.

Scene-Level Dataset Generation: To generate training data
for the scene model, we feed a poorly rendered image from
simulation along with a templated text prompt to an image-
and-text guided diffusion model [18], as shown in Fig 3.
This generates a new image that attempts to simultaneously
match the content described in the text prompt while retaining
the global scene layout from the provided image. We found
that this model is able to reliably maintain the scene layout,
but it may change some individual components of the scene,
e.g., replacing objects with a different but plausible category,
or changing the number of subcomponents within an object
such as the drawers or handles. Despite these failures, the
large-scale structural consistency still provides a useful source
of training data. After running our simulated image through
the generative model, we have realistic images that contain
known high-level object positions and spatial relationships,
but unknown category and low-level part structures (e.g. the
parts for articulated objects such as cabinets), since these
may have been modified by the generative model in it’s
forward pass. This means that the scene model dataset con-
tains complete images, but incomplete labels. Rather than
complete (x, z) pairs, we have a dataset Dscene = {(x, z̃)}
of (x, z̃) pairs where z̃ only contains the bounding boxes,
transforms and parents of the high-level (non-part) objects
z̃ = {(b1, T1, p1) . . . (bn, Tn, pn)} but lacks accurate low-level
information.

Object-Level Dataset Generation: The process for gen-
erating object-level training data is similar but requires more
care due to the tendency of text-to-image generative models to
modify low-level details. For objects with complex kinematic
structures, such as cabinets, we procedurally generate a large
number of examples of these objects and render them in
isolation from different angles. Rather than using a generative
model to construct entirely new images, we use it to produce
diverse texture images, which are overlaid in the appropriate
locations on the image using perspective warping. We then
change the background of the image using the generative
model with appropriate masking derived from the original
rendering. This part-by-part texture-based rendering process
ensures diversity while maintaining consistency in low-level
details. Unlike the scene dataset which contains complete



Fig. 3: Controlled Generation: Rendering URDF models in simulation and generating paired images with a guided diffusion model.

Fig. 4: Depiction of the URDFormer Training Procedure and Architecture. (Left) Given an RGB image of the scene, i.e. a kitchen, we
train two separate networks: URDFormer (Global) focuses on predicting parent and spatial info of how to place the object. URDFormer

(Part) takes the cropped image containing each object and predicts detailed structure. The results of the two predictions are combined and
create the full scene prediction. (Right) The URDFormer architecture takes as input a cropped RGB image and object part boxes and

predicts a hierarchy consisting of a base class and parent-child relations that make up the final URDF file.

images but partial labels, the object dataset contains partial
images (in the sense that they contain only a single object),
but complete labels for the object and its kinematic parts. We
can say that this dataset Dobject contains (x̃, z) pairs where x̃
is an image of a single object rather than a full scene (hence
the partial x), and z is complete for the single object and its
parts.

The result of these two data generation processes is a high-
level scene structure dataset Dscene, and a low-level object
dataset Dobject, that can subsequently be used to train an object-
level and a scene-level inverse model, as shown on right side
in Figure 2.

C. Learning Inverse Generative Models for Scene Synthesis
Given the datasets Dobject = (x̃, z) and Dscene = (x, z̃)

constructed as described above, we can use supervised learning

methods to learn an inverse model that maps images of a
complex object or scene to the corresponding simulation asset.
To take advantage of these partially complete datasets, we
must add some structure to our prediction model. We do this
by splitting our learned inverse model in correspondence with
the split in our forward data generation process: we train one
network f−1

θ to predict the high-level scene structure using
dataset Dscene and another network g−1

ϕ to predict the low-
level part structure of objects using Dobject.

To model both the scene-level prediction model (f−1
θ ) and

the low-level part prediction model (g−1
ϕ ), we propose a novel

network architecture — URDFormer, that takes an RGB image
and predicts URDF primitives as shown in Fig4. Note that both
the scene-level prediction and the low-level part prediction use
the same network architecture, the scene-level simply operates



on full images with object bounding boxes extracted, while
the part-level operates on crops of particular objects with
object parts extracted. In the URDFormer architecture, the
image is first fed into a vision transformer [20] (ViT) visual
backbone to extract global features. We then obtain bounding
boxes of the objects in the image using the masks rendered
from the original procedurally generated scene in simulation
(these are known at training time, and can be extracted using
detection models at test time). We then use ROI alignment [21]
to extract features for each of these bounding boxes. These
feature maps are combined with an embedding of the bounding
box coordinates and then fed through a Transformer [22] to
produce a feature for each object in the scene. An MLP then
decodes these features into an optional base class label (used
only when training the object-level model), and a discretized
3D position and bounding box. In addition, it also produces
a child embedding and a parent embedding that are used to
predict the hierarchical relationships in the scene (object to
its parent and so on). To construct these relationships, the
network uses a technique from scene graph generation [23]
that produces an n×n relationship score matrix by computing
the dot product of every possible parent with every possible
child. The scene-level model also specially has a set of learned
embeddings for six different root objects corresponding to the
four walls, the floor, and the ceiling so that large objects like
countertops and sinks can be attached to the room.

Test-time scene generation from real-world RGB images:
Due to the unpredictable nature of the text-to-image generative
transforms that are used to perform global dataset generation,
which may change the base class identities, e.g., the diffusion
model might turn a fridge into a cabinet, only the position,
bounding box, and relationship information is used when
computing the high-level scene structure. To generate a full
approximation of the scene structure ẑ from a natural image
at test time, the image and a list of high-level bounding
boxes (from a detection model) are first fed into the scene
prediction model f−1

θ , which predicts the global structure, i.e.
the location and parent for each object. The image regions
corresponding to these boxes are then extracted and a second
detection model is used to produce part-level bounding boxes.
Each of these image regions that correspond to a particular
object (e.g. a cabinet or a fridge) and the corresponding part-
level boxes (e.g. individual drawers or doors) are then fed
into the part prediction model g−1

ϕ to compute the kinematic
structure of the low-level objects and parts. This nested pre-
diction structure can be used to generate entire scenes from
web-scraped RGB images drawn from any image dataset to
generate novel simulation content both at the scene level and
at the object level. We visualize this process in Fig 4

III. USING URDFormer FOR ROBOTIC CONTROL VIA A
REAL-TO-SIMULATION-TO-REAL PIPELINE

As described above, URDFormer provides the ability to
generate realistic, diverse and controllable scenes in simulation
through inverse modeling. This suggests that on deployment,
URDFormer allows a system to take a single picture of a
deployment scene and then construct a fully articulated scene
in simulation with minimal human effort. In this section, we

describe how this type of controllable inverse modeling can
serve as a useful tool for robotic learning through a real-to-
simulation-to-real pipeline.

The most straightforward way of using URDFormer for
robotic control is a model-based one - first synthesize a
“digital twin” for a deployment time scene, and directly
use this for planning and control in the real world with a
model-based approach. This is challenging for several rea-
sons - (1) the constructed simulations may not be perfectly
accurate, (2) there is no access to Lagrangian environment
state in the real world. Instead, we take a learning-based
approach to the problem; we use URDFormer to generate
not precisely the test time scene in simulation, but rather a
narrow, representative distribution of simulation environments
via a targeted randomization procedure. This distribution of
environments in simulation can be used to learn generalizable
robotic policies that operate from raw perceptual input, directly
transferring back from simulation to the real-world. Doing so
closes the real-to-simulation-to-real loop, obtaining real-world
robotic policies with minimal human effort in the process. This
pipeline has three major components:

Scene Generation: Given a robot’s RGB pointcloud obser-
vation of an unseen environment, we use URDFormer to gen-
erate a URDF file from RGB that captures the kinematic and
dynamic structure of the real-world scene. We further resize
the URDF to fit the pointcloud’s scale. Importing the URDF
into simulation then provides a playground for data collection
and policy training. Most importantly, this simulation is not
just an arbitrary model but an approximate representation of
the real world scene of interest on deployment.

Targeted Randomization: In simulation, we have access
to ground truth information which we can exploit to inexpen-
sively collect trajectory data for policy learning. We use an
efficient motion planner [24] to quickly collect approximately
optimal trajectories solving multiple tasks in simulation. To
increase the simulation diversity and decrease the sim2real
gap, we additionally randomize over minor details, e.g., texture
variants, shapes, and sizes of parts. This “targeted” random-
ization is in contrast to procedural generation which covers
many different environment variations but is not informed by
the real-world environment.

Policy Synthesis: To synthesize a policy from the collected
data, we can train a language-conditioned behavior cloning
policy [25] operating from RGB point-clouds in simulation,
applying image augmentations during training to enable policy
transfer back to the real world. We stress that the proposed
pipeline is not limited to data collection with motion planning
and behavior cloning but can also be used to train policies
with other policy search methods [26, 27, 28]. The proposed
pipeline results in a robust policy that can successfully solve
tasks in the real-world without the manual burden of con-
structing environments in simulation [11], expensive human
data collection [30] or real-world reinforcement learning [31].

IV. EXPERIMENTS

In this section, we aim to answer the following questions:
A. Does integrating URDFormer in a real2sim2real pipeline



Fig. 5: Qualitative Results for Real-world Robot Experiments: An RGB image is pre-processed by detecting bounding boxes of
relevant parts. The URDFormer then predicts the corresponding URDF of the cabinet. When importing the cabinet into the simulation, it is

re-scaled using depth measurements. Furthermore, the real-world texture is cropped using the bounding boxes and projected onto the
cabinet. This realistic simulation can then be used to generate massive data with the help of motion planning, ground truth information,

and targeted domain randomization. Finally, we show that training a language-conditioned multi-task policy can be zero-shot transferred to
the real world to solve several opening and closing tasks.

improve policies that can transfer zero-shot to the real
world?

B. Can URDFormer generate plausible and accurate simula-
tion content from internet images?

C. Can URDFormer generalize to diverse objects and
scenes?

D. Can URDFormer support different robots and tasks?

A. Does integrating URDFormer in a real2sim2real pipeline
improve policies that can transfer zero-shot to the real world?

As described in Section III, URDFormer can be used
to instantiate a real-to-simulation-to-real pipeline for robot
learning. In this section, we describe a concrete instantiation
of one such pipeline and provide a detailed evaluation of the
resulting robotic behavior in the real world.

Real-to-sim-to-real pipeline: We implement our real-to-
sim-to-real approach on a UR5 robot equipped with a custom-
made 3D printed 2-fingered gripper and an Intel RealSense
D435i mounted on the endeffector. We evaluate our pipeline
on five different cabinets with varying sizes, shapes, textures,
joint types (revolute and prismatic), and handles, with two
tasks per cabinet. The details of each pipeline element is as

follows:
1. Real-to-sim: First, our system takes an image of the scene
and uses a finetuned Grounding DINO [32] with model soup
approach[33] (Detailed in IV-B2) to automatically detect the
parts of the cabinet, i.e., door, drawer, and handles. URD-
Former then generates the corresponding URDF from the RGB
image and the predicted bounding boxes using URDFormer,
as described in Section II-C.
2. Policy Learning in Sim: The URDF is then imported into
a physics simulator (PyBullet [34]) and scaled appropriately
using depth measurement. Next, a motion planner, in this case
cuRobo [24], generates trajectories that solve a variety of tasks,
e.g., closing/opening a drawer/door by utilizing privileged
information in simulation. To account for possible prediction
inaccuracies of URDFormer (red highlights in Fig 5) and to
robustify the trained policy, we apply targeted randomization
(TR) that randomizes the scene while maintaining its semantic
configurations. In particular, doors, drawers, and handles are
randomly replaced with their PartNet [19] equivalents while
the size and base of the object are kept fixed. For each door
or drawer that was generated in this process, the geometry
was randomly replaced with alternate geometry from the



Cabinet A Cabinet B Cabinet C
Task Open the top left

drawer
close the door put object in

bottom drawer
open top middle

drawer
get object from
middle drawer

close the top
drawer

OWL-ViT [29] 0/5 0/5 0/5 0/5 0/5 0/5
DR 0/5 0/5 0/5 0/5 0/5 0/5

URDFormer-ICP 2/5 1/5 —- 3/5 1/5 3/5
URDFormer-TR 4/5 5/5 2/5 4/5 3/5 3/5

Cabinet D Cabinet E Average
Task Open the door close the door open the drawer close the drawer

OWL-ViT [29] 0/5 0/5 0/5 0/5 0/50
DR 0/5 2/5 2/5 5/5 9/50

URDFormer-ICP 0/5 3/5 3/5 2/5 24/45
URDFormer-TR 5/5 4/5 4/5 5/5 39/50

TABLE I: Quantitative Results for our Real-world Robot Experiments: Our Real2Sim2Real pipeline with the URDFormer and targeted
(domain) randomization in simulation results in a 78% success rate across all tasks. Results are reported in success / number of trials.

same PartNet class, but rescaled to be the appropriate size.
Additionally each handle or knob that was generated was
similarly replaced with alternate geometry, but also randomly
translated in the plane of the door or drawer that it was
attached to. Textures are randomized by cropping out the real
texture using the bounding boxes, generating variations by
prompting Stable Diffusion [18] and fitting it back onto the
shape. Finally, the RGB input is augmented by adding standard
augmentations such as Gaussian noise and color jitter. After
automatically collecting a dataset of successful simulation
trajectories using the motion planner, we train a behavior
cloning policy network that predicts end-effector poses from
point clouds. The network architecture follows M2T2 [25]
and predicts 6D end-effector poses from RGB pointclouds
given language instructions specifying the task. Appendix D-C
provides the full training procedure and architectural details.
3. Sim-to-Real: In order to transfer back to the real world,
the policy takes an RGB pointcloud, current end-effector
pose and a natural language instruction, and predicts the next
end-effector pose, using a PD controller to execute these
predictions.

We term this specific instantiation of our real2sim2real
pipeline URDFormer-TR and stress that the data generation
process, the policy network, and the transfer procedure are
highly flexible and can be replaced depending on the exact
problem setting.

Baselines: We compare URDFormer-TR with multiple vari-
ations of our real-to-simulation-real pipeline with varying
degrees of access to real-world information. The results are
shown in Table I.

(1) OWL-ViT [29]: First, we evaluate against a zero-shot
vision-language model baseline. Inspired by VoxPoser [35],
given a language instruction (Appendix D-B), we used the
same open-vocabulary detector (OWL-ViT [29]) to predict
bounding boxes for the prompted parts and handles that are
important to the task. After mapping the detection to the
observed pointcloud, a motion planner can then generate plans
to solve the task directly in the real world.

(2) Domain Randomization (DR) [36]: Another approach
is Domain Randomization (DR). We follow the augmentations
from URDFormer-TR but on randomly generated cabinets
with different configurations. Similarly to URDFormer-TR,

since we assume depth observations during inference, we also
scale the generated cabinets to the real-world size. We follow
the same approach for trajectory generation, policy training,
and real-world transfer procedure of URDFormer-TR.

(3) URDFormer-ICP: This presents a learning-free, digi-
tal twin-style approach based on the Iterative Closest Point
(ICP) [37] algorithm. First, we construct a simulation with the
URDF created by the URDFormer and scale it according to the
depth observation. We then use the ground truth simulation to
compute end effector poses which we execute directly in the
real world. When the cabinet’s pose changes, we use ICP to
transform the computed end effector poses to the new cabinet
pose.

Real-world Results of Real-to-Sim-Real Training: Run-
ning the zero-shot OWL-ViT, we find that the model fails to
predict the fine-grained details required to solve the tasks, i.e.,
”top middle drawer”, ”right door”, and ”handles”. We visualize
qualitative examples of results from OWL-ViT in Appendix
D. Without localizing these regions of interest, the motion
planning cannot solve the tasks leading to 0% success on all
tasks.

While DR works surprisingly well on simple cabinets,
e.g., Cabinet E which only has a single drawer, it fails to
solve any of the more complicated configurations. We observe
URDFormer-TR outperforms DR by 40% on average, showing
the benefits of targeting the domain randomization procedure
to the real-world configuration.

URDFormer-ICP shows average performance across all
opening and closing tasks. When tasking it with ”put object in
bottom drawer”, we observe the limitations of the approach.
Since the object is a lot smaller than the cabinet, ICP matches
the pointcloud of the cabinet instead of the object. This results
in an inability to transform the endeffector pose with respect to
the graspable object and results in failure to solve the task. In
general, neither baseline can reliably solve putting and getting
objects in/from the drawer. While URDFormer-TR succeeds
50% of the time, it showcases the difficulty of the task and
leaves space for future improvements.

Overall, the proposed real2sim2real pipeline using URD-
Former and targeted randomization shows a 78% success rate
across all cabinet variations and tasks and an 85% success
rate on opening/closing tasks. Even though the URDFormer’s



Close the
fridge drawer

Open the
left fridge door

Close the
left fridge door

Close the
right door

Close the
dishwasher door

Open the
oven door

Close the
dishwasher door

Open the
oven drawer

Get the toy from
the drawer

Close the
right door

Open the
bottom drawer

Open the top
middle drawer

Close the
top door

Put the toy in
the first drawer

Open the
right door

Open the
top drawer

Fig. 6: Reality Gym: A simulation environment with a variety of assets originated from internet images (black box) using URDFormer.
We predict URDFs of internet images which can be loaded in any simulator. These URDFs are randomized with meshes from the Partnet
dataset. We introduce 4 main tasks: (1) Open any articulated parts (2) close any articulated parts (3) fetch objects and (4) collect objects
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Fig. 7: Generated Kitchen Scenes: Examples of kitchen scenes predicted by URDFormer from internet images given labeled bounding
boxes. Examples of failure parts are highlighted in red boxes.

predictions are not always accurate, as indicated by the red
boxes in Fig5, the targeted randomization robustifies the
policy network to allow for zero-shot real-world transfer more
effectively than un-targeted simulation generation.

B. Can URDFormer generate plausible and accurate simula-
tion content from internet images?

1) Paired Training Dataset Generation: To synthesize our
paired training dataset, we first procedurally generate a set of
URDF representations of scenes in simulation both for global
scenes like kitchens and for single objects like ovens, cabinets,
and fridges (Fig 3). We then follow the procedure in II-B to
control the data generation of paired images, generating a large
dataset of simulation scenes and paired realistic RGB images
(Fig 3). For objects with diverse parts, we find that depth-
guided Stable Diffusion [18] often ignores the semantic details
of local parts, leading to inconsistencies as visualized in the
Appendix A-A). As described in Section II-B we generated
a large and diverse set of texture templates by using images
of existing textures downloaded from the internet to guide
the depth-guided stable diffusion. During training, we then
randomly chose one template texture and warped it back
to the original part region using perspective transformation.
Finally, we applied a stable diffusion in-painting model [18]
to smooth the boundary of the parts and generate background
content (Details are described in Appendix A-A). In total,

we generated approximately 118K image-URDF pairs across
7 categories of single articulated objects, and approximately
200K image-URDF pairs of global kitchen scenes.

2) Object and Part Detection during Inverse Phase: URD-
Former takes both the RGB image and bounding boxes of the
object parts and predicts URDFs. During the inverse phase,
we adopt an off-the-shelf open vocabulary object detector
GroundingDINO [32].

Fig. 8: Comparison among pretrained, finetuned and model soup
GroundingDINO on cabinet dataset

However, if we directly apply GroundingDINO on detecting
parts such as drawers and handles, the detection performance
is unsatisfying with an F1 score of 53.4%. Instead, if we use
the same generated dataset that was used to train URDFormer
(Visualized in Appendix A) and finetune groundingDINO,
we observe an improvement with an F1 score of 66.2%.
However, We also observe that compared to the pretrained



GroundingDINO, the finetuned GroundingDINO often fails to
detect parts that have unique shapes or patterns. Inspired by
recent work Model Soup[33], we simply average the pretrained
weights and the finetuned weights. This leads to surprising
improvement, with an F1 score of 79.7%. We additionally
apply post-processing to remove duplicated boxes. Figure 8
shows Model Soup’s influence on the bounding box detection.

3) Real World Evaluation Datasets: We create two types
of test sets for the evaluation of URDFormer: (a) Object-
Level set includes labeled URDFs of 300 internet images of
individual objects from 5 categories including 100 cabinets, 50
ovens, 50 dishwashers, 50 fridges and 50 laundry machines.
(b) Kitchen set includes URDFs of 54 internet images of
kitchens, with 5-15 articulated objects per kitchen. For each
scene, we manually label the bounding box for each object
and its parts, as well as the URDF primitives including mesh
types, parent id, positions, and scales relative to its parent.
We used the mesh types such as “left door”, and “right door”
to infer link axis and joint types. All the position values and
scale values are discretized into 12 bins.

4) Evaluation Metrics: Evaluating entire scenes is chal-
lenging given the mixed structure and subjective nature of
human labeling. We therefore measured accuracy of the
predicted model using three individual sub-tasks: category
accuracy, parent accuracy and spatial error. In order to compute
these statistics, we must first align predicted objects in the
scene to their ground truth counterparts. This is accomplished
by computing the intersection-over-union (IOU) of the 2D
detected boxes used to instantiate the scene objects and the
ground-truth bounding boxes of all the objects in the scene.
Hungarian matching is then used to assign each detected box
to a single ground truth box. Note that if the number of
predicted boxes is not the same as the number of ground truth
boxes, there will be some false positives (predicted objects
that do not correspond to any ground truth objects) or false
negatives (ground truth objects that do not have any associated
predictions). We therefore also record the overall precision and
recall of the objects in the scene. Once we have a set of aligned
detected and ground-truth boxes, we say that the category of
a predicted object is correct if it matches the category of the
assigned ground truth object. Similarly the predicted parent is
correct if it matches the parent of the assigned ground truth
object. Finally the spatial error is the average absolute error of
the predicted discretized spatial coordinates. For larger objects,
the model predicts four coordinates x1, y1, x2, y2 representing
the bounding box of the object relative to its parent. For
small objects such as handles and knobs, we predict only the
object center x1, y1 and so the spatial error only considers
these two values. Finally, we separate out these scores for
high-level object predictions (cabinets, dishwashers, etc.) and
low-level part predictions (doors, handles, etc.) so that the
effects of various ablations on larger and smaller parts are
more interpretable.

5) Qualitative Results: Figure 7 shows several examples
of kitchens generated by URDFormer using internet images.
While the model makes some mistakes, it is able to repro-
duce kitchen environments that largely match the structure of

the original images. Figures 9 and 10 show successful and
unsuccessful reconstructions of individual objects and scenes
respectively. These images also show results when ground-
truth boxes are provided. Again, while the model makes some
mistakes, it largely captures the overall configuration of the
objects and scenes.

6) Ablation Study: We compare the prediction of URD-
Former trained with (1) Ours: realistic texture generated by
part-consistency stable diffusion (2) Random: random texture
downloaded from Describable Textures Dataset [38] (3) Sim:
random 3-channels RGB color and (4) Selected: carefully
selected texture images that matches the object categories,
such as wood texture (cabinet), metal texture (dishwasher)
and so on. The results are shown in Table II. We observe
that generated realistic texture is particularly helpful in global
prediction, including identifying object types (cabinet or oven),
parents (which wall the cabinet belongs to), and where to put
the object. Surprisingly, we found the texture realism does not
affect so much when predicting part structures and sometimes
is slightly worse than random texture by 1% to 2%. This is
likely due to using bounding box position features is sufficient
for predicting simple low-level structures. For example, if a
small box A is in the center of another box B, box B is likely
a drawer instead of a door or a handle. On average, prediction
using finetuned object detector performance is worse than
using GT boxes due to detection error. However, one surprising
observation is that using detected boxes helps slightly with
identifying global object types. We hypothesize this is because
boxes labeled by humans sometimes group multiple cabinets
into one single box if they are close, making mesh prediction
slightly challenging.

7) Reality Gym: With the ability to cheaply generate an
arbitrary number of realistic simulation assets directly from
the internet, we introduce RealityGym, a robot learning suite
with a collection of realistic simulation assets and scenes
created from real world RGB images using URDFormer.
We provide an initial set of 300 objects (Cabinets, Ovens,
Fridges, wahsers and Dishwashers) and 50 kitchen scenes
from internet images, with future work looking to expand
this into a bigger dataset. In addition, we also provide 84
meshes of cabinet frames, 20 door meshes, 59 drawers, 440
handles and 116 knobs from PartNet[19]. We can randomly
incorporate these meshes into the initial URDFs to generate
diverse scenes complete with articulated objects. We define
4 main tasks: (1) Open any articulated parts i.e. top middle
drawer (2) Close any articulated parts (3) Fetch objects (4)
Collect objects. We automatically generate tasks and their
language descriptions, and use a motion planner (Curobo [24])
to complete the tasks. Fig 6 and Fig 7 show examples of robots
performing in RealityGym on a variety of generated simulation
environments and assets. Details about RealityGym can be
found in Appendix C.

C. Can URDFormer generalize to diverse objects and scenes?
In order to demonstrate the generalization capability of

URDFormer, we used the same techniques discussed on Sec-
tion II to create five additional object categories and four
additional scene categories for qualitative evaluation. The
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Fig. 9: Successful and unsuccessful examples comparing URDFormer prediction on different articulated objects using (1) manually labeled bounding boxes
and (2) bounding boxes provided by fine-tuned GroundingDINO. Image results of fine-tuned GroundingDINO (Red) compared with manually labeled boxes

(Blue) are shown in the first row. Note that textures are removed for better visual comparison.

Fig. 10: Successful and unsuccessful examples on kitchens comparing URDFormer prediction based on boxes generated by (1) manual labeling and (2)
fine-tuned GroundingDINO. The first row also shows the boxes detected by fine-tuned GroundingDINO (Red) compared with manually labeled boxes (Blue)

Kitchen Object-Level
GT boxes Finetuned Grounding DINO GT Boxes Finetuned Grounding DINO

Ours Random Sim Selected Ours Random Sim Selected Ours Random Sim Selected Ours Random Sim Selected

G
lo

ba
l

Mesh Acc (↑) 0.578 0.42 0.407 0.576 0.603 0.533 0.354 0.462 0.740 0.463 0.520 0.677 0.688 0.440 0.520 0.630
Parent Acc (↑) 0.833 0.831 0.813 0.807 0.816 0.819 0.810 0.819 — — — — — — — —
Spatial Err (↓) 0.809 0.845 0.848 0.885 0.987 1.036 1.038 1.032 — — — — — — — —

Recall (↑) 1 1 1 1 0.726 0.726 0.726 0.726 — — — — — — — —
Precision (↑) 1 1 1 1 0.951 0.951 0.951 0.951 — — — — — — — —

Pa
rt

s

Mesh Acc (↑) 0.704 0.719 0.662 0.675 0.537 0.558 0.505 0.522 0.903 0.927 0.867 0.861 0.851 0.865 0.811 0.803
Parent Acc (↑) 0.765 0.773 0.763 0.75 0.711 0.696 0.707 0.711 0.874 0.878 0.857 0.857 0.826 0.821 0.806 0.805
Spatial Err (↓) 1.799 1.699 1.891 1.981 2.957 2.885 2.798 3.107 0.478 0.420 0.649 0.867 0.791 0.753 0.917 1.129

Recall (↑) 1 1 1 1 0.495 0.495 0.495 0.495 1 1 1 1 0.853 0.832 0.832 0.832
Pred Precision (↑) 1 1 1 1 0.927 0.927 0.927 0.927 1 1 1 1 0.986 0.987 0.987 0.987

TABLE II: Ablation Study. We analyze which part training with generated texture benefits the most by comparing URDFormer trained
with other textures, across GT boxes and boxes from the finetuned Grounding DINO detector.

new object categories are toilet, microwave, desk, laptop and
chair, while the four scene categories are bedroom, bathroom,
laundry room and study room. We trained a single new part
model that incorporates these additional categories by adding
approximately 6k training examples per object category to the
original training dataset. We took the same approach to train
a single global scene model and added approximately 10k
training examples for the bathroom and bedroom. We found
that the laundry room and study could be adequately captured
with no new global scene examples, as these categories only
contain objects that are present in the other scene categories.
Figure 11 shows example training data generated by the
forward pipeline, while Figure 12 shows qualitative examples
of objects and scenes inferred by a URDFormer trained on
this data. More examples are available in Appendix F.

D. Can URDFormer support different robots and tasks?

To demonstrate that URDFormer supports multi-step tasks
and different robots, we train an additional policy for a Stretch
robot to place an object in a desk drawer as shown in Figure
13. Figure 14 shows the data generation process for training
the mobile robot’s policy. First, a single image of the robot’s
environment is passed to a pretrained URDFormer model to
produce a scene description of the desk. Then, this scene
description is used to generate training data in simulation
that can instruct the robot how to accomplish it’s multi-stage
objective. When generating this data, we use an inpainting
model [18] to reduce the sim2real gap by inpainting the pixels
covered by the simulated object overlaid onto the original
image. Finally the robot policy, which predicts a per-step
affordance map from an initial image, is trained on this new



Fig. 11: The forward phase can be applied to additional objects and create a diverse dataset for training URDFormer.

Fig. 12: Qualitative study of URDFormer generalization to other scenes and objects with successful and unsuccessful (highlighted in red) examples. In
particular, We train URDFormer on the new dataset with added categories shown in Fig11 and evaluate on internet images for both object-level and global

prediction. Interestingly, we did not train URDFormer on the Laundry Room and Study Room but found URDFormer can generalize to these unseen
categories, which is likely due to the two-stage training of URDFormer Global and URDFormer Part. Please note that URDFormer does not reconstruct

accurate meshes or predict properties such as friction or mass, which is detailed in the limitation and future work sections.

Fig. 13: We trained a Stretch robot on a multi-step task ”Clean Up
the Table Surface” using URDFormer prediction

generated data. This policy is implemented as a UNet, which
takes the initial observation, as well as the task embedding and
predicts multiple object affordance maps. These affordance
maps are used with a motion planner to guide the robot at each
step. Details on training the policy can be found in Appendix
D-C.

V. RELATED WORK

A. Asset Creation for Robot Manipulation

Constructing realistic and diverse assets for robot learning
and control has been an important goal for many years.
Early efforts [39, 40, 41, 42] used geometric approaches
to reconstruct static 3D scenes. Recently learned approaches
[43, 44, 45] have in some cases improved the accuracy and
visual realism of these approaches. While these techniques can
offer incredible visual realism, they do not usually produce
articulated models that allow for dynamic interaction.

To address this, many prior works have explored utilizing
assets that are manually curated [9, 46, 47, 48], procedural-
generated [11, 49], or scanned from the real world [50, 51, 52],
to train robot manipulation policies. While the learned policies
are supposed to apply directly to test scenes, there could
be challenging scenes in which the systems fail to faithfully
recognize and interact with the scene due to the scene com-
plexity or sim-to-real gaps. In our work, we resort to a targeted
system that first reconstructs a URDF given the test scene and
then performs scene-specific training to learn a specialized
model in the scene. There is also a rich body of literature
on building digital twins of articulated objects from the real



Fig. 14: URDFormer can be applied to a different robot such as a Stretch Robot to perform a multi-step task such as ”clean up the table surface”. We
apply URDFormer to predict the URDF of a study desk, and render a dataset to train a vision-based policy to predict affordance map at each step.

world, either based on passive visual observations such as 2D
multi-view images or videos [53, 54, 55, 56, 57], 3D RGB-
D, depth images or point clouds [58, 59, 60, 61, 62], full-
scene 3D scans [63, 64, 65], or through interactive perception
which requires few-shot interactions with the object [66, 67,
68, 69, 70, 71, 72]. While in some cases, these methods can
successfully produce high quality models, they require either
video, depth sensing or interaction with the objection which is
more difficult to aquire and is rarely available in online internet
data. Our work, instead, advocates for a faster and cheaper
pipeline where we reconstruct a simple URDF model, which
is sufficient for downstream learning, from a single image
without the need for laborious scanning or object interaction.

B. Synthetic Data Augmentation with Generative Models
Everyone can freely generate realistic image content nowa-

days with the booming development of the latest generative
AI technology [73, 18]. Researchers have also explored the
use of such powerful generative models in creating large-scale
high-quality synthetic data for training perception systems in
different applications, such as image classification [74, 75],
object segmentation [76, 77, 78], and representation learn-
ing [79, 80, 81]. In the field of robotics, several studies
have attempted to reduce sim-to-real gaps and broaden the
domain coverage using synthetic data augmented with gener-
ative models [82, 83, 84, 85, 86, 87]. In our case, we look
to augment synthetic asset renderings with realistic textures
produced by generative models. While recent studies have
proposed controllable image generation algorithms such as
ControlNet [88] and 3D mesh texturing methods [89, 90],
we find them lacking in preserving part-level structure details
and consequently propose a novel controlled texture generation
method to produce realistic synthetic data for training.

VI. LIMITATIONS AND FUTURE WORK

Please see the full list of limitations and future work in
Appendix F.

Part Detection URDFormer relies on the performance of
bounding box detection. Although the finetuned Grounding
DINO improves performance than the pretrained model, there
is still a gap for improvement, especially on global scene
detection.

Texture and Meshes URDFormer focuses on predicting
kinematic URDF structures and uses predefined meshes that
might not match the real-world scenes. To apply textures,
we simply assume all parts are rectangular shapes, and use
the bounding box of each object part to crop the image and
import it into a uv map template. However, this does not work

for irregular meshes such as a donut-shape door, or when the
object in the image is tilted.

Limited URDF Primitives URDFormer currently only
supports articulated objects that have limited joint types such
as prismatic and revolute, and cannot predict complex objects
such as cars and lamps.

Link Collisions URDFormer only predicts URDF primi-
tives for each bounding box, which sometimes leads to a col-
lision between two links. Further post-processing is required
to resolve this issue.

Multiple Trained Components Our pipeline is not trained
end-to-end and consists of multiple learning components.
While this increases the complexity of the system, it is neces-
sary to ensure consistency when using the generative model,
and make the most use of existing pretrained components.

Inferred Physical Properties Our system does not
presently attempt to infer physical properties such as mass,
inertial moments or friction directly from observations in the
scene. In theory the visual information present in the images
may allow for a rough approximations of these quantities. We
expect this to be a productive direction for future work.

VII. CONCLUSION

We present a scalable pipeline for creating articulated
simulation assets from real-world images. In particular, we
introduce a forward-inverse framework that generates realistic
and consistent images of articulated objects and trains a
transformer-based network URDFormer to predict their cor-
responding URDFs. We present RealityGym, a robot learning
suite with realistic simulation assets generated from real-world
images. Additionally, we show that the predicted URDFs
with targeted domain randomization enable better zero-shot
performance in the real-world. Our pipeline provides the first
step towards cheaper and scalable realistic scene generation
for robot learning.
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