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Expressive Whole-Body Control for
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Fig. 1: Our Robot demonstrates diverse and expressive whole-body movements in different scenarios. Top Row: The robot is
dancing, hugging and doing high-five with a human. Middle Row: The robot is able to walk on different terrains including gravel
and wood chip paths, inclined concrete paths, grass, and curbsides with various expressions like zombie walk, exaggerated
stride or waving. Bottom Left: The robot is able to use a waving gesture to open a wave-sensing door. Bottom Right: The
robot is shaking hands and provoking. Website: https://expressive-humanoid.github.io/.

Abstract—Can we enable humanoid robots to generate rich,
diverse, and expressive motions in the real world? We propose
to learn a whole-body control policy on a human-sized robot
to mimic human motions as realistic as possible. To train such
a policy, we leverage the large-scale human motion capture
data from the graphics community in a Reinforcement Learning
framework. However, directly performing imitation learning
with the motion capture dataset would not work on the real
humanoid robot, given the large gap in degrees of freedom
and physical capabilities. Our method Expressive Whole-Body
Control (ExBody) tackles this problem by encouraging the upper
humanoid body to imitate a reference motion, while relaxing the
imitation constraint on its two legs and only requiring them to
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follow a given velocity robustly. With training in simulation and
Sim2Real transfer, our policy can control a humanoid robot to
walk in different styles, shake hands with humans, and even
dance with a human in the real world. We conduct extensive
studies and comparisons on diverse motions in both simulation
and the real world to show the effectiveness of our approach.

I. INTRODUCTION

When we think of robots, we often begin by considering
what kinds of tasks they can accomplish for us. Roboticists
typically work under this framework, and formulate control
as optimizing for a specific cost function or task objective.
When applied to robots that resemble our house pets such
as quadruped robot dogs, or humans, whole-body control
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Fig. 2: Overview of our framework. Our framework is able to train on data from various sources such as static human motion
datasets, generative models, video to pose models that are widely available. After motion retargeting, we acquire a repertoire of
motion clips that are compatible with our robot’s kinematic structure. We extract expression goal ge and root movement goal
gm from the rich features from retargeted motion clips as the goal of our goal-conditioned RL objective. The root movement
goal gm can also be intuitively given by joystick commands, enabling convenient deployment in the real world.

methods on both of these two form factors tend to produce
singular motion patterns that lack grace and personality —
oftentimes a by-product of the additional constraints we have
to add to make optimization or learning easier. In contrast,
motions from actual humans and animals are rich, diverse,
and expressive of their intent or emotional valence. In other
words, there exists a large subspace of motion control that is
not described by common objectives such as body velocity,
heading, and gait patterns. What would it take to build robots
that can generate, and perform diverse whole-body motions
that are as expressive as humans?

In this paper, we tackle the problem of learning a whole-
body motion control policy for a human-sized robot that can
match human motions in its expressivity and richness. We do
so by combining large-scale human motion capture data from
the graphics community with deep Reinforcement Learning
(RL) in a simulated environment, to produce a whole-body
controller that can be deployed directly on the real robot. We
illustrate the expressiveness of our controller in Fig. 1, and
show that the robot is sufficiently compliant and robust that it
can hold hands and dance with a person.

Our work benefits from prior research from the com-
puter graphics community on physics-based character anima-
tion [35], and from the robotics community on using deep
reinforcement learning to produce robust locomotion policy
on various legged robots [31, 5]. In our study, we found that
although physics-based character animation produces natural-
looking reactive control policies that look good in a virtual
setting, such results often involve large actuator gains in the
range of 60kg/m that are one magnitude larger than what is
feasible with current hardware. We also found that human
reference motion often involves a lot more degrees of freedom
(DoF) than the robot hardware. For example, the physics-
based animation can use much more DoF (e.g., 69DoF [38])
compared to a real-world robot (e.g., 19DoF on a Unitree H1
robot). These two factors make the direct transfer of graphics
techniques onto the real robot infeasible.

Our key idea is to NOT mimic exactly the same as the
reference motion. We propose to train a novel controller that
takes both a reference motion and a root movement command
as inputs for real humanoid robot control. We call our approach
Expressive Whole-Body Control (ExBody). During training
with RL, we encourage the upper body of the humanoid robot
to imitate diverse human motions for expressiveness, while
relaxing the motion imitation term for its two legs. Concretely,
the reward function for the legged locomotion is designed
for following the root movement commands robustly provided
by the reference motion instead of matching each exact joint
angle. We train our policy in highly randomized challenging
terrains in simulation. This not only allows robust sim2real
transfer but also learns a policy that does not just “repeat”
the given motion. The user can command the humanoid robot
to move at different speeds, turning in different directions
on diverse terrains, and reproduce the reference motion on
the upper body at the same time. As shown in Fig. 1, we
can command our robot to dance with a human, waving and
shaking hands while walking, or walking like a mummy on
diverse terrains.

We adopt the Unitree H1 robot in both simulation and real-
world experiments. To learn from diverse human motions,
we utilize the CMU MoCap dataset (around 780 reference
motions). Such richness not only enables more expressive hu-
manoid motion but also more robust walking. Our evaluation
shows the upper body motions and diverse moving velocity
augment the training data and provide efficient guidance in
training. We also compare our method with applying more
imitation constraints on legged motion in both simulation
and the real world and show our approach that relaxes the
constraints indeed leads to better and more robust results. To
the best of our knowledge, our work is the first work on
learning-based real-world humanoid control with diverse mo-
tions. While our current results focus on expressive humanoid
control, we hope our approach can also shed some light
on studying generalizable humanoid whole-body manipulation



and navigation.

Metrics Mimic WBC(Ours) PHC [38] ASE [52]

DoFs 19 69 37
Number of Motion Clips 780 11000 187

Total Time of Motions (h) 3.7 40 0.5
Real Robot ✓ × ×

Single Network ✓ × ✓
Linear Velocities Obs × ✓ ✓

Keypoint Positions Obs × ✓ ✓
Robot Height Obs × × ✓

TABLE I: Comparisons with physics-based character anima-
tion works. In PHC, the policy observes the Linear velocities
and keypoint positions of each rigid body, while in ASE linear
velocities are for the root only. PHC and ASE both observe
privileged states that are not available on the real robot.

II. PROBLEM FORMULATION

We consider humanoid motion control as learning a goal-
conditioned motor policy π : G×S 7→ A, where G is the goal
space that specifies the behavior, S is the observation space,
and A is the action space that contains the joint positions
and torque. We assume in the rest of this paper, without loss
of generality, that the observation and action space are given
by the H1 humanoid robot design. However, our proposed
approach should generalize to similar body forms that differ
in the exact number of actuated degrees of freedom.

a) Command-conditioned Locomotion Control: We aim
to produce a robust control policy for the Unitree H1 hardware
that can be commanded by the linear velocity v ∈ R3, body
pose in terms of row/pitch/yaw rpy ∈ R3 and the body height
h measured at the root link. Formally, the goal space for
root movement control Gm = ⟨v, rpy, h⟩. The observation S
includes the robot’s current proprioception information st =
[ωt, rt, pt,∆y, qt, q̇t,at−1]

T . ωt is the robot root’s angular
velocity, rt, pt is roll and pitch. Note that the policy does not
observe the current velocity v, and the absolute body height
h and the current yaw angle yt because these are privileged
information for the real robot (see Tab. I). We let the policy
observe the difference between current and desired yaw angle
∆y = yt−y to convert the global quantity to a local frame that
can be intuitively commanded at deployment time. The actions
at ∈ R19 is the target position of joint-level proportional-
derivative (PD) controllers. The PD controllers compute the
torque for each motor with the specified PD gains kip and
damping coefficient kid.

b) Expressive Whole-Body Control: We extend the
command-conditioned locomotion control to include descrip-
tions of the robot’s movement that are not captured by root
pose and velocity in Gm. We formulate this as the more general
goal space G = Ge×Gm, where the expression target ge ∼ Ge

includes the desired joint angles and various 3D keypoint
locations of the body.

Specifically, in this work, we work with a relaxed problem
where we exclude the joints and key points from the lower half
of the body from Ge. This is because the robot has a different
body plan from humans, and including these low-body features

Category Clips Length (s)

Training

Walk 546 9076.6
Dance 78 1552.3

Basketball 36 766.1
Punch 20 800.0
Others 100 1188.0
Total 780 13383.0

Real-World Test

Punch 1 18.9
Wave Hello 1 5.0

Mummy Walk 1 22.5
Zombie Walk 1 13.0

Walk, Exaggerated Stride 1 2.5
High Five 1 3.3

Basketball Signals 1 32.6
Adjust Hair 1 9.6

Drinking from Bottle 1 15.2
Direct Traffic 1 39.3
Hand Signal 1 32.2

Russian Dance 1 8.2
Total 11 202.3

O.O.D. Text to
motion [64]

Boxing 1 4.0
Hug 1 4.0

Shake Hands 1 4.0

O.O.D. Video
to motion [3]

Exaggerated greeting 1 11.0
Put on backpack 1 11.0

Dance: uptown funk [60] 1 15.9
Dance: hiphop [65] 1 31.0

O.O.D. Total 7 80.9

TABLE II: The details of our dataset. We select a subset
from CMU MoCap dataset for training, and test on various
expressive motions in sim and the real world. The source
videos of the ones with references are taken from YouTube.
Other source videos are self-recorded.

from human motion capture data tends to over-constrain the
problem and lead to brittle, and poorly performing control
policies. Formally, for the rest of this paper, we work with
Ge = ⟨q,p⟩, where q ∈ R9 are the joint positions of the nine
actuators of the upper body, and p ∈ R18 are the 3D key
points of the two shoulders, two elbows, and the left and right
hands. The goal of expressive whole-body control (ExBody)
is to simultaneously track both the root movement goal (for
the whole body) gm ∼ Gm, as well as the target expression
goal (for upper body) ge ∼ Ge.

III. EXPRESSIVE WHOLE-BODY CONTROL

We present Expressive Whole-Body Control (ExBody), our
approach for achieving expressive and robust motion control
on a humanoid robot as shown in Fig. 2. In the following
sections, we cover the key components of this approach,
including strategies for curating and retargeting human motion
capture data to humanoid robot hardware, and using some of
these prior knowledge to improve the RL training procedure.

A. Strategies for Curating Human Behavior Data

In our research, we selectively used a portion of the
CMU MoCap dataset, excluding motions involving physical
interactions with others, heavy objects, or rough terrain. This
was done semi-automatically, as our framework cannot re-
alistically implement motions with significant environmental
interactions. The resulting motions are in Tab. II. Apart from



Fig. 3: Left: During training, we extract a large repertoire of retargeted motion clips and train our ExBody policy. Right:
During deployment, we can replay motion that can come from a variety of sources such as static motion datasets, diffusion
models, or video-to-skeleton models. For Unitree H1, the robot we use, the shoulder and hip joints have three perpendicular
DoFs. Other joints are 1 DoF each. There are 19 DoFs in total. We also notice that some of the retargeted motions exhibit
exaggerated movement with robot’s lower body, which is why we use ExBody to make it transferrable.

the in-distribution motions, we also test a variety of motions
taken from text-to-motion [64] and video-to-motion models
[3]. The corresponding source videos and real-world robot
videos are provided in supplementary videos. The O.O.D.
performance is further evaluated in Sec. IV.

Unlike [16], which randomly samples points using a spher-
ical coordinate frame, and then checks if the points are under
the ground or have a collision with the robot itself, our
approach from large human data naturally has samples that
generally do not violate such constraints. Even if there are
some collisions with the robot itself after retargeting, the RL
will avoid it via collision penalization. We show in Sec. IV
that this prior distribution actually helps with policy learning
a lot compared with manually designed sample space.

B. Motion Retargeting to Hardware

In consideration of the distinct morphological differences
between the H1 robot and humans, we adapt the human
motion data to the robot’s framework by straightforwardly
mapping local joint rotations onto the robot’s skeleton. We
use the Unitree H1 robot[4] as our platform with a total
mass of around 51.5kg and a height of around 1.8m. The
Unitree H1 robot has 19 DoFs. The shoulder and hip joints
have 3 revolute joint motors connected perpendicularly, thus
equivalent to a spherical joint usually used in human motion
datasets [39, 21]. During retargeting, we consider the 3 hip
or shoulder joints as 1 spherical joint. After retargeting, we
remap the spherical joint which is represented by a normalized
quaternion qi

m = (qx, qy, qz, qw) to the original joint angle of
3 revolute joints m = [m1,m2,m3] ∈ R3 by exponential

mapping. To achieve this we first convert the quaternion q to
the form of axis angle:

θ = 2arccos(qw), a =
1√

1− q2w

qx
qy
qz


where a is the rotation axis and θ is the rotation angle. For
small angles, the last axis is used if

√
1− q2w is close to zero.

Then the mapped angle is just simply m = θa, where m =
[qi, qj , qk] is 3 corresponding DoFs in q. For 1D joints, namely
the elbow, torso, knee, and ankle, we take the rotation angle
projected onto the corresponding rotation axis of the 1D joints.
In Fig. 3, we show the diverse motions both for the original
dataset and the retargeted ones. We can see that although the
retargeted data loses some DoFs with hardware constraints, it
is still able to keep the important expressions from the original
data.

C. Guiding State Initialization from Human Mocap Data

We use massively parallel simulation to train our RL policy
with Isaac Gym [40, 56]. We randomly sample an initial state
g = [ge,gm] from the motion dataset for each environment
in simulation and set its state to the sampled state during
initialization or resetting. We show by extensive experiments
how this random initialization helps with policy learning.

With the diverse goal state g distribution as shown in
Fig. 5 and the corresponding tracking rewards, ExBody can
produce diverse root movement and diverse arm expressions
while still maintaining the balance via the lower body without
mimicking rewards. Our policy can make the robot walk



Term Expression Weight

Expression Goal Ge

DoF Position exp(−0.7|qref − q|) 3.0
Keypoint Position exp(−|pref − p| 2.0

Root Movement Goal Gm

Linear Velocity exp(−4.0|vref − v|) 6.0
Roll & Pitch exp(−|Ωϕθ

ref −Ωϕθ|) 1.0
Yaw exp(−|∆y|) 1.0

TABLE III: Expressive Rewards Specification

forward/backward, sideways, turn yaw, vary root height, adjust
roll, pitch, etc.

D. Rewards

In each step, the reward from the environment consists of
expression goal, root movement goal tracking, and regulariza-
tion terms derived from [56]. Imitation rewards are detailed
in Tab. III, where qref ∈ R9 is reference position of the
upper body joints, pref ∈ R18 is reference position of the
upper body keypoints, vref is reference body velocity, Ωϕθ

ref
and Ωϕθ are reference and actual body roll and pitch. Refer
to supplementary for regularization rewards.

IV. RESULTS

In this section we aim to answer the following questions
through extensive experiments both in sim and the real world:

• How well does ExBody perform on tracking ge and gm?
• How does learning from large datasets help policy explo-

ration and robustness?
• Why do the state-of-the-art approaches in computer

graphics for physics based character control not work
well in the real robot case and why do we need ExBody?

Our baselines are as follows:
• ExBody + AMP: This baseline uses an AMP reward to

encourage the policy’s transitions to be similar to those
in the retargeted dataset.

• ExBody +AMP NoReg: We remove the regularization
terms in our reward formulations and see if AMP reward
itself can handle the regularization of the imitation learn-
ing problem with such a large dataset.

• Random Sample: Randomly uniformly sample root
movement goals gm with the range shown in Tab. IV.

• Random Sample Small: Smaller random sample ranges
in Tab. IV

Baseline vx vy roll pitch base height

Random Sample ±2.0 ±1.0 ±0.5 ±0.5 [0.9, 1.1]
Random Sample

Small ±1.5 ±1.0 ±0.2 ±0.2 [0.9, 1.1]

TABLE IV: Random sample ranges.

• Separate: The upper body and lower body are two
separately trained policies with observations and actions

Fig. 4: We sample 10,000 points of hand positions relative
to the robot. Left: retargeted motion dataset. Right: learned
ExBody policy rollouts. The upper body movement from the
dataset forms a natural distribution for learning.

only for upper and lower body as well. The details of the
separate policies are in supplementary materials.

• ExBody O.O.D.: Ours evaluated on a small out-of-
distribution dataset in Tab. II.

• No RSI: Initialize the environment with default DoF
positions and root states instead of sampling from the
motion dataset.

• Full body tracking: Instead of tracking only the upper
body with Ge, the objective is to track the joint angles and
3D key points for the entire body including hips, knees,
and ankles.

Our metrics are as follows:
• Mean Episode Linear Velocity Tracking Reward

(MELV)
• Mean episode roll pitch tracking reward (MERP)
• Mean episode lengths (MEL)
• Mean episode key body tracking reward (MEK)

How well does ExBody perform on tracking gm? From Fig.
5 we can see that for the motion sample, the tracking error is
very low where the sample density is dense. In areas where
the sample density is sparse, the tracking error is slightly
higher. This can be explained by the lack of samples leads
to inaccurate results and the difficulty of learning long-tail
distributions. For the last three columns of Fig. 5, we study
whether velocity goal vx will affect the performance of other
goals. We can see that our policy can track roll, pitch and
root height well without being affected by walking velocity.
However, the policy is not very good at some root goals with
large pitch and roll angles. We hypothesize due to human-to-
robot gaps, these goals can greatly influence stability. Another
factor can be the robot only has one DoF at the waist, making
it harder to adapt to complicated poses.

For Random Sample, our method performs well on a
manually selected uniform sampling range. The range is
among the largest root movement goals in recent literature
[32, 54, 34, 70], which is discussed in detail in Tab. IV.
Note that although Random Sample looks better than Motion
Sample, the heatmap does not consider the sample density. The
average performance is not directly implied from the heatmap
and is further discussed in Tab. IV.
How well does ExBody perform on tracking ge ? We



Fig. 5: Tracking error heatmaps for root movement goal Gm. Top row: goals sampled from MoCap motion dataset. Middle
row: op row with the sampled goals overlay. Bottom row: uniformly random sample goals. We first bin all sampled points
into a grid of size 0.2x0.2 (regardless of the unit, except the grid size along y axis of the last column is 0.05), and compute
the average mean squared tracking error of all the samples in the grid. For the first two columns, the tracking error considers
both x and y axes. For the last three columns, we want to see if the vx goal will affect the tracking error of roll, pitch and
root height., thus only y axis error is considered.

Fig. 6: Random Sampling gm results in a behavior that the
policy immediately kneels after initialization, trying to be as
stable as possible while ignoring the root movement goal gm.

render the samples of end-effectors (hands) positions relative
to the robot to show a nearly identical distribution of reference
motion and learned policy as shown in Fig. 4.
Why do we need coupled goals? We compare with baselines
to show that our approach ExBody is superior compared
with other design choices. Traditionally, RL-based robust
locomotion for legged robots is trained either through reward
engineering or from a limited set of reference motions. In our
work, we show the advantage of learning robust Whole-Body
control for humanoid robots from large motion datasets. As
shown in Tab. V, our method achieves the best linear velocity
tracking performance (MELV). The benefit largely comes
from RSI, where we initialize the robot to different states
that encourage exploration. No RSI is not able to discover
proper positive reward states due to poor exploration of the
environment, resulting in a policy in which the policy actively
pursues episode termination by lowering its root lower than
the termination threshold as soon as possible to avoid further
accumulation of negative rewards. The Random Sample
baseline’s behavior is a kneel-down motion for all the goals as

shown in Fig. 6, taking advantage of the environment. It gives
up gm completely and focuses on ge. It has a similar MEL
score with the motion sample and a higher MEL score with
the Random Sample (the training distribution), meaning that
kneeling on the ground is more robust. The Random Sample
Small baseline does not generate a kneeling behavior due to
a reduced sampling range that leads to an easier initial task.
If we want the policy to work well on a relatively large range
of commands, traditionally it is done with curriculum learning
[41, 18] that can have many parameters to tune (grid v.s. box,
etc). Again our method does not require such manual tuning
of curriculum to work. From Tab. V, we can see the linear
velocity tracking (MELV) increases dramatically, but at the
cost of MERP, indicating the conflict of objective problem.
However, even with a reduced sampling range, the perfor-
mance is significantly worse than ours, indicating ExBody’s
advantage in overcoming conflicts of objectives problems. We
speculate that the motion dataset offers a more advantageous
distribution of Gm, which in turn facilitates the policy learning
process. For example, many motions started from standing
in place and gradually started to walking, creating a natural
curriculum for the policy to learn.

Why does not ExBody do full DoF tracking? Due to the
limited torque, DoFs of the real robot, we design ExBody
to only mimic the arm motions ge ∼ Ge while the whole-
body’s objective is to track root movement goals gm ∼ Gm.
We show in Tab. V that tracking the Whole-Body expressions
will result in reduced performance with all metrics. The robot’s
lower body movements exhibit numerous artifacts, notably that
while the reference motion is designed for a single step, the
robot executes multiple steps in an attempt to stabilize.



Baselines Motion Sample Random Sample

MEL↑ MELV↑ MERP↑ MEK↑ MEL MELV MERP MEK

ExBody (Ours) 16.87 318.67 754.92 659.78 13.51 132.14 523.79 483.67
ExBody + AMP 17.28 205.60 765.85 635.51 15.59 95.11 583.82 544.59
ExBody + AMP NoReg 16.16 87.83 714.74 561.56 15.40 36.76 584.23 515.53
No RSI 0.23 0.63 10.09 7.25 0.22 0.10 7.41 7.15
Full Body Tracking 13.28 246.11 584.40 397.25 10.76 76.46 407.88 284.69
Random Sample 16.50 181.85 704.73 326.66 16.37 38.51 586.83 324.10
Random Sample Small 15.99 251.74 688.82 591.77 12.09 106.94 428.10 438.40
Separate 15.38 264.67 671.24 582.38 11.42 110.55 409.60 417.23

ExBody (Ours) O.O.D. 19.26 330.33 828.99 683.97 15.39 179.26 583.04 498.05

TABLE V: Comparisons with baselines. We sample 20 seconds simulation rollouts with 4096 environments in simulation and
report their mean episode metrics. Motion Sample means we sample gm from retargeted motions. Random Sample means we
uniformly sample gm in Tab. IV.

Fig. 7: We sample 20-second simulation rollouts with 4096
environments and take the mean episode length as our metric.
The termination condition for an episode is when the root
height is lower than 0.5m. The robot is randomly pushed every
3 seconds by setting a uniformly sampled root velocity vp =
[vpx, v

p
y ]

T along the ground plane. vpx, v
p
y ∈ [−vmax, vmax].

vmax is the x axis of the figure.

Unified policy is more robust than separate ones. From Fig.
7 we can see that our method is significantly more robust than
the separate baseline. This is due to the drawbacks of separate
modules introduced in [18]. If we want to deploy Separate
policy in the real world, additional delay and frequency mis-
match may also cause unpredictable behaviors and instability.
Comparisons with adversarial methods. We also compare

with the adversarial methods that can serve as a regularizer
on top of our method [38, 37, 15]. Our method plus an AMP
regularizer demonstrates better results in terms of MEL and
MERP . But just like the Random Sample baseline, it is at a
great cost of linear velocity tracking (MELV ).

The policy generated by AMP often results in a gait with
less knee flexion and inadequate foot clearance, leading to
toes that tilt non-horizontally and a tendency to stumble while
walking, as illustrated in Fig. 8. These characteristics could
pose challenges for sim-to-real transfer. Our method has a
stable stepping gait while the AMP one tries to use straight

Fig. 8: H1 robot doing a High Five in the real world. Top
Row: ExBody only (Ours) walks with more bent knees and
has more foot height clearance. Bottom Row: ExBody + AMP
tends to walk in a straight-leg way and has less foot height
clearance during walking.

legs and stand in place, which results in significant stumbling
and feet artifacts shown in Fig. 8. ExBody + AMP NoReg
tries to replace the regularization terms in Tab. III. However, it
has even worse performance, demonstrating a high-frequency
jittery movement that is not feasible for sim-to-real transfer,
indicating for such a complex system, AMP reward itself is not
sufficient. Evaluation on O.O.D. motions. We also added the
O.O.D. motions to the evaluation on the tracking performance
in Tab. V. The numbers in Tab. V are not directly comparable
because they are evaluated on different sets. However we can
still see that it works better on a small O.O.D dataset than
a large training set. Our method successfully generalizes to a
small set of motions taken from different motion generation
approaches, showing the great adaptability and potential to
learn from or deploy zero-shot to even larger scale data. An
example of motions is shown in Fig. 11. Additional snapshots
of O.O.D. motions are in supplementary.
How expressive goal Ge affects stepping frequency We do



Fig. 9: Robot following an out-of-distribution dynamic dance move extracted from a YouTube video [60]. The top row shows
the robot motions and original dance video snapshots. The middle row shows the motor position of the left knee to indicate the
step frequency because the robot is not equipped with foot contact sensors. The blue and green segments are to differentiate
different motion segments. The color itself has no meaning. The bottom row is the computed step frequency f = n/∆t for
each segment, where n and ∆t are the total steps and time of a segment.

a case study in the real world where the root movement goal
Gm is set to zero. We choose the uptown funk motion from
O.O.D. dataset form II

From Fig. 9 we can see that the robot dynamically adjusts
its stepping frequency to maintain balance. The first, second,
and fourth segments contain motions that involve dynamic
fast swings of the upper body. The robot adapts by taking
slightly larger steps in different directions to maintain dynamic
balance, which might explain why the step frequency is lower.
The third and fifth segments involve less dynamic dance
moves. The robot presents a rhythmic step-in-place behavior
and has faster-stepping frequencies. How root movement goal
Gm affects stepping frequency We set the expression goal
Ge to the default upper body position to observe how velocity
command vx in Gm affects stepping frequency.

From Fig. 10, the robot emerges a higher step frequency
than humans with low forward velocity vx. This observation
further indicates the necessity of ExBody. The morphology
difference between robots and humans makes the preferred
stepping frequency different, and the policy needs to optimize
the gait itself instead of blindly tracking the given motions.
This phenomenon can be further evidenced by Full Body
Tracking baseline having a poor performance compared to our
method and is not able to transfer to the real world, despite
being more natural-looking in simulation. But the natural look
also comes with additional artifacts. Full Body Tracking tends
to add sub-steps in between the steps of the original motion,
introducing additional instability and jerkiness.

Fig. 10: We uniformly sample 4096 different vx ∈ [0, 2] in
root movement goal Gm with 15s for each vx. We compute the
step frequency using the same method in Fig. 9 with a moving
window of length 4s. We plot a randomly sampled 1500 data
points to avoid visual complexity (Robot) and do a linear
regression with the original sampled points (Robot Linear).
Human is the linearly fitted line with human locomotion data
in [46]. The linearly fitted stepping frequency when vx = 0 is
slightly above 2.0Hz, while in Fig. 9 it is around 1.9Hz. This
can be explained by the relationship not being strictly linear
and sim-to-real gaps.

V. RELATED WORK

Whole-Body Control with Legged Robots Legged robots
often need to coordinate the entire body to complete some
tasks or do some motions such as dancing, reaching for a



Fig. 11: Text2Motion trajectories replay. A motion sequence
is prompted offline with the input ”a man mimics boxing
punches” through MDM [64]. Our robot presents robust,
responsive, and precise tracking performance.

far object, etc, which were previously primarily achieved by
dynamics modeling and control [44, 73, 24, 45, 11, 29, 68].
However, for a humanoid robot that has a high degree of
freedom [20, 30, 23, 8, 2, 1], it will require substantial
engineering and modeling [61] and are sensitive to real-world
dynamics changes. Recent research in control [9, 12, 47, 55]
has enabled the teleoperation of humanoid robots using model-
based methods. Dallard et al. [9] achieve full-body syn-
chronization between the humanoid robot and the human
teleoperator by anticipating human motion. Darvish et al.
[12] improve the scalability of retargeting in teleoperation of
humanoid robots through inverse kinematics over the robot
model. Penco et al. [47] separate humanoid teleoperation
into low-level whole-body control and high-level velocity
tracking to ease the burden of controlling humanoid robots.
Joao et al. [55] enable robust whole-body teleoperation of
humanoid robots by applying feedback forces to the operator
based on the robot’s movements. Despite these encouraging
results, these works inherit the limitations of the underly-
ing model-based controllers. Recent learning-based methods
[18, 25, 6, 26, 57, 28, 27] achieved whole-body locomotion
and manipulation for a quadruped robot. These advances also
enable better learning-based humanoid control [53, 62, 33, 58].
However, most of the studies focus more on the locomotion
side or learning a relatively small dataset. Different from all
previous works, our work enables whole-body control for
expressive motions on a human-sized robot in the real world.
Legged Locomotion Blind-legged locomotion across chal-
lenging terrains has been widely studied, via reward spec-
ification [43, 31, 17, 16], via imitation learning [14] and
gait heuristics [32, 59]. Vision-based locomotion has achieved
great successes traversing stairs [5, 72, 42, 13], conquering
parkour obstacles [75, 7], manipulating boxes [10]. However,
these works have not fully taken advantage of demonstration
data. Even works utilizing re-targeted animal motions or
pre-optimized trajectories still leverage a very small dataset
[49, 67, 14, 19, 71], while our framework can benefit from
learning with a large-scale motion dataset.

Physics-based Character Animation Whole-body humanoid
motion control has been widely studied in the realm of com-
puter graphics, where the goal is to generate realistic character
behaviors. Adversarial methods such as [51, 52, 63, 22] suffer
from mode collapse as the motions get more and more. Peng
et al. [52] used a unit sphere latent space to represent the
187 motions. However, it still suffers from mode collapse and
utilizes additional skill discovery objectives. Imitation-based
methods [69, 66, 74, 48] alleviate this problem by decoupling
control and motion generation, where a general motion track-
ing controller is trained to track any motions and a motion
generator outputs motions to track. These works demonstrated
successful transfer to real robot quadrupeds [50, 14]. [69] sepa-
rate the entire CMU MoCap data into several clusters and train
mixture-of-expert policies to reproduce physically plausible
controllers for the entire dataset. Luo et al. [38] used a similar
idea by progressively assigning new networks to learn new
motions. However, these methods are hard to transfer to the
real humanoid robot because of the unrealistic character model
(SMPL humanoid [36] has a total of 69 DoFs with 23 actuated
spherical joints and each joint has 3 DoFs, there is usually no
torque limit ), privileged information used in the simulation
(world coordinates of robots, velocities, etc) demonstrated in
Tab. I. ExBody does not rely on such information and instead
relaxes the lower body tracking objective and uses a whole-
body root movement goal. While considering the capability of
our robot, we select a subset of motions that include mainly
walking and everyday behaviors and expressions and use only
one single network for all the motions.

VI. DISCUSSIONS

We introduce a method designed to enable a humanoid
robot to track expressive upper body motions while ensuring
the maintenance of robust locomotion capabilities in the wild.
This method benefits from extensive training on large motion
datasets and the use of RSI, equipping the robot with the
ability to mimic a wide range of motions responsively and to
robustly execute root movement commands that are randomly
sampled. Our comprehensive evaluation encompasses both
simulated environments and real-world settings. Additionally,
the design choices within our framework are rigorously an-
alyzed: quantitatively through simulations and qualitatively
through real-world scenarios. We further show its capability
to imitate motions from generative models and the internet.

VII. LIMITATIONS

In the process of retargeting, the direct mapping of joint
angles from the MoCap dataset to the H1 robot, which
possesses fewer DoF, leads to a loss of information. Conse-
quently, this can result in the retargeted behavior deviating
from the original motion. To mitigate these discrepancies, the
application of high-fidelity motion retargeting methods could
yield significant improvements. Unlike quadrupeds, humanoid
robots now still need to start from a stand-still pose. Auto
recovery and initialization could be explored to reduce the
cost of doing experiments.
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Appendix

A. Motion Dataset Selection

We curated the training and inference dataset shown in
Tab. II to single person motions on flat terrain to ensure
these expressive motions are reasonable to track. We filter
the motions in CMU MoCap by checking if the following
keywords are in the description of the motion: [”walk”, ”navi-
gate”, ”basketball”, ”dance”, ”punch”, ”fight”, ”push”, ”pull”,
”throw”, ”catch”, ”crawl”, ”wave”, ”high five”, ”hug”, ”drink”,
”wash”, ”signal”, ”balance”, ”strech”, ”leg”, ”bend”, ”squat”,
”traffic”, ”high-five”, ”low-five”]. And excluding motions with
the following keywords: [”ladder”, ”suitcase”, ”uneven”, ”ter-
rain”, ”stair”, ”stairway”, ”stairwell”, ”clean”, ”box”, ”climb”,
”backflip”, ”handstand”, ”sit”, ”hang”].

B. Additional Training Details

Rewards Expression and root movement goal rewards are
specified in Tab. III. Regularization reward items are listed in
Tab. VI, where hfeet is feet height, tair

i indicates the duration
each foot remains airborne, 1new contact represents new foot
contact with ground, Fxy

i and F z
i are for foot contact force in

horizontal plane and along the z-axis respectively, with Fth is
the contact force threshold. q̈ is joint acceleration, at is action
at timestep t, 1collision indicates self-collision, qmax and qmin
are limits for joint positions, gxy is gravity vector projected
on horizontal plane. We specifically add feet related reward
items to make sure the feet are comfortably lifted high enough
and having a reasonable contact force with the ground when
putting down.

Term Expression Weight

Feet Related

Height max(|hfeet| − 0.2, 0) 2.0
Time in Air

∑
tair

i ∗ 1new contact 10.0
Drag

∑
|vfoot

i |∗ ∼ 1new contact -0.1
Contact Force 1

{
|Fz

i | ≥ Fth
}
∗ (|Fz

i | − Fth) -3e-3
Stumble 1

{
∃i, |Fxy

i | > 4|F z
i |
}

-2.0

Other Items

DoF Acceleration |q̈|2 -3e-7
Action Rate |at−1 − at| -0.1
Energy |q̈|2 -1e-3
Collision 1collision -0.1
DoF Limit Violation 1qi>qmax||qi<qmin

-10.0
DoF Deviation |qlow

default − qlow|2 -10.0
Vertical Linear Velocity v2z -1.0
Horizontal Angular Velocity |ωxy|2 -0.4
Projected Gravity |gxy|2 -2.0

TABLE VI: Regularization Rewards Specification

Training Parameters We use PPO with hyperparameters
listed in Tab. VII to train the policy. AMP baseline parameters
used in Section IV are provided in Tab. VIII.
Text2motion Diffusion Model We utilize the pre-trained
transformer based MDM model to generate human motions

Hyperparameter Value

Discount Factor 0.99

GAE Parameter 0.95

Timesteps per Rollout 21

Epochs per Rollout 5

Minibatches per Epoch 4

Entropy Bonus (α2) 0.01

Value Loss Coefficient (α1) 1.0

Clip Range 0.2

Reward Normalization yes
Learning Rate 1e−3

# Environments 4096

Optimizer Adam

TABLE VII: PPO hyperparameters.

Hyperparameter Value

Discriminator Hidden Layer Dim [1024, 512]

Replay Buffer Size 1000000

Demo Buffer Size 200000

Demo Fetch Batch Size 512

Learning Batch Size 4096

Learning Rate 1e− 4

Reward Coefficient 4.0

Gradient Penalty Coefficient 1.0

TABLE VIII: AMP hyperparameters.

from text prompts. In each generating process, 10 repetitions
are requested and the most reasonable motion is manually
selected for retargetting.
Details of separately trained baseline We train an up-
per body policy πu. The observation Su includes sut =
[qut , q̇

u
t ,a

u
t−1]

T . qut , q̇
u
t ,a

u
t−1

T ∈ R9 include the 9 motors of
the upper body (3 shoulder and 1 elbow motors on each side,
1 waist motor). The action aut is the target motor positions of
the 9 motors we just mentioned. The rewards for πu remain
the same as in the original paper except we remove the root
movement goal rewards.
The observation Sl for lower body policy πl include slt =

[ωt, rt, pt,∆y, qlt, q̇
l
t,a

l
t−1

T
]. qlt, q̇

l
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l
t−1

T ∈ R10 include the
10 motors of the lower body (3 hip, 1 knee and 1 ankle motors
on each side). The action alt is the target motor positions of the
10 motors we just mentioned. The rewards for πl remain the
same as in the original paper except we remove the expression
goal rewards. ωt is the robot root’s angular velocity, rt, pt is
roll and pitch.



C. Dataset Visualization

D. Additional Real World Results Visualization

We provide detailed visualization for some motions evalu-
ated in the real world. Fig. 14 presents 8 motions from CMU
MoCap and 2 motions from text2motion diffusion model. The
diffusion model target motions are first generated through
MDM [64] on SMPL skeleton, then we retarget this motion
to H1 morphology offline. The top images in (k) and (l) are
visualizations of target motions rendered with SMPL mesh in
Blender. Fig. 15 tracks motions recorded with Move One [3]
using both online [65] and self-recorded videos.

Real-world quantatative evaluation with AMP baseline.
We test a series of motions in the real world as shown in Tab.
IX and recorded their roll and pitch variations as an indicator
of how stable the policy is. We can see that Ours + AMP has
more shaking than ours.

Motions Ours Ours+AMP

Walk, Exaggerated Stride 0.054 0.087
Zombie Walk 0.072 0.11
Wave Hello 0.062 0.095

Walk Happily 0.037 0.074
Punch 0.052 0.055

Direct Traffic, Wave, Point 0.037 0.094
Highfive 0.04 0.084

Basketball Signals 0.045 0.081
Adjust Hair Walk 0.042 0.09

Russian Dance 0.063 0.1
Mummy Walk 0.064 0.086

Boxing 0.075 0.068
Hug 0.037 0.086

Shake Hand 0.036 0.099

Mean 0.051 0.087

TABLE IX: We report the mean absolute roll and pitch angle
for a 10-second test in the real world for each motion.



(a) (b) (c) (d)

Fig. 12: Dataset visualization of our training data from CMU MoCap. We sample all the motion clips at an incremental of 1s.
The resulting number of plotting data points are 1338. We can observe the bias of the distribution from human motions. Such
distributions are proven to help policy learning in Sec. IV.

(a) Dataset sampling gm

(b) Random sampling gm

Fig. 13: Policy’s state distribution under different sampling strategies. The green dots are the policy rollout’s states. For dataset
sampling, we record 20 data points for 4096 environments with randomly sampled arm trajectories from our training set.
For random sampling, the red shade represents the randomly sampled gm range. For yaw velocity, we do not sample the
command, because the policy observes the difference between the desired and actual yaw, and does not explicitly track the
angular velocity. The second peak in root height is the initialization bias.



(a) Wave hello

(l) Hug

(c) High �ve

(b) Stride walk

(e) Adjust hair (f ) Signal Palming

(k) Shake hand

(g) Mummy walk (h) Russian dance

(d) Direct tra�c, wave

(i) Signal double dribbling (j) Direct tra�c at crossroads

Fig. 14: Expressive motion evaluation in the real world. Target motions of (a)-(j) are from CMU MoCap. Target motions of (k)
and (l) are prompted using MDM [64]. The prompts respectively are ”moving arm out to shake hands” and ”a person crosses
their arms and then puts them back to their side”.



(c) Dance: hiphop

(b) Put on backpack(a) Exaggerated greeting

(d) Dance: uptown funk

Fig. 15: Video-to-Motion evaluation. (a,b) The videos were self-recorded and subsequently processed offline using Move One [3]
to create custom motions. (c,d) To assess the robustness and tracking performance of the policy, we select two challenging
dance videos from the Internet.


