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Abstract—Recent advancements have enabled human-robot
collaboration through physical assistance and verbal guidance.
However, limitations persist in coordinating robots’ physical
motions and speech in response to real-time changes in human
behavior during collaborative contact tasks. We first derive
principles from analyzing physical therapists’ movements and
speech during patient exercises. These principles are translated
into control objectives to: 1) guide users through trajectories,
2) control motion and speech pace to align completion times
with varying user cooperation, and 3) dynamically paraphrase
speech along the trajectory. We then propose a Language-
Grounded Motion Controller that synchronizes motion and
speech, modulating both based on user cooperation. Experiments
with 12 users show the Language-Grounded Motion Controller
successfully aligns motion and speech compared to baselines. This
provides a framework for fluent human-robot collaboration. The
implementation of the controller is available as open source code
to enable extension, verification, and reuse of the methods1.

I. INTENDED DEMONSTRATION

The demonstration will involve having audience volunteers
sit beside a UR robot [1] equipped with the Language-
Grounded Motion Controller. The robot will physically guide
the volunteer’s hand along a predefined trajectory on the table,
representing a therapeutic exercise motion. Concurrently, the
robot will provide verbal instructions and guidance to the
volunteer through a speaker, using pre-recorded audio clips.
As the robot moves the volunteer’s hand, the volunteer will
be encouraged to arbitrarily vary the amount of resistance they
apply against the motion. The Language-Grounded Motion
Controller will react in real-time to modulate both the pace of
physical motion and the speech rate to maximize alignment.
Audience members will clearly observe the robot slowing and
speeding up the motion and audio in correlation with changes
in applied resistance. Additionally, the phrase content and
length of the speech instructions will adaptively change as

1Github repository: https://github.com/language-playback-robot-controller/
language-playback-robot-controller (MIT license)

the pace varies, demonstrating the controller’s paraphrasing
capabilities. Audience members will see that slower motions
induce the use of longer instruction phrases, while faster
motions result in shorter phrases.

II. INTRODUCTION

Robots have been enabled to collaborate with humans by
providing physical assistance as well as verbal guidance during
collaborative tasks. Research on robots providing physical
assistance has shown robots assisting with heavy lifting and
materials handling in warehouses and factories [2]; handling
payloads, reducing physical strain on human workers [3]; and
helping turn and lift patients, freeing up human nurses for
other critical care tasks [4]. In addition to providing physical
assistance, robots have also been used to provide verbal in-
structions and dialog interaction in human-robot collaboration
[5], [6]. Using natural language capabilities, robots understand
commands, ask clarifying questions, and provide guidance to
human partners [7]. Research suggests that language-enabled
robots lead to higher perceived collaboration quality compared
to silent robot partners [8].

Aligning the pace of physical movement with the pace of
audio is crucial for achieving natural and intuitive human-robot
collaboration. The importance of this alignment is evident
from observations of a therapist interacting with a patient
during physical therapy sessions (Sec. IV). The therapist
consistently adjusts her speech rate and content to match
the patient’s movements and level of cooperation. When the
patient struggles or resists, the therapist slows down her speech
and provides more detailed guidance. Conversely, when the pa-
tient is cooperative and performing the movements smoothly,
the therapist speaks at a brisker pace and uses shorter, more
concise instructions. This alignment helps to create a more
engaging and effective therapy session, as the patient receives
guidance that is responsive to their needs and abilities.

https://github.com/language-playback-robot-controller/language-playback-robot-controller
https://github.com/language-playback-robot-controller/language-playback-robot-controller


Research in human-robot interaction has also shown that
temporal coordination and synchronization between a robot’s
actions and its communication can significantly impact the
user’s perception of the robot and the overall interaction qual-
ity. For example, Hoffman and Breazeal [9] found that users
report higher levels of satisfaction and perceive the robot as
more helpful and competent when its speech and gestures are
temporally aligned. Similarly, Andrist et al. [10] demonstrated
that synchronizing a robot’s gaze and speech improves users’
engagement and their ability to recall information presented
by the robot.

In the context of physical human-robot collaboration, align-
ing the pace of movement with the pace of audio instructions
can help users better anticipate and follow the robot’s guid-
ance. This alignment can be particularly important in scenarios
where the user’s level of cooperation or resistance may vary,
as it allows the robot to adapt its communication style to
maintain a smooth and effective collaboration. Furthermore,
misalignment between the robot’s speech and motion can lead
to confusion, frustration, and a breakdown in communication.
If the robot’s instructions are delivered too quickly or too
slowly relative to the user’s actions, it can hinder the user’s
ability to follow the guidance and may result in a less
satisfactory interaction.

By investigating techniques to align the pace of physical
movement with the pace of audio, we propose a Language-
Grounded Motion Controller that synchronizes the robot’s mo-
tion and speech under changing user cooperation. Like human
demonstrations, longer motion induces slower, longer speech
and vice versa. The controller paraphrases speech utterances
along the trajectory to match changing cooperation and speed.
It does so by varying admittance parameters, audio pace, and
adaptive paraphrasing. The controller is inspired by principles
derived from analysis of human-human physical interactions,
specifically from an observational study of a physical therapist
collaborating with a patient during therapeutic exercises at
a rehabilitation center. From observations of the therapist’s
physical and verbal guidance, we identify core principles and
translate them into formal control objectives for the controller
(details in section IV).

We make the following contributions:

1) Formalize core principles to derive control objectives
for natural human-robot collaboration – adaptive pac-
ing, aligned speech-motion timing, correlating speech
complexity with motion speed – from observations of
human-human physical therapy interactions;

2) Language-Grounded Motion Controller from the derived
control objectives in order to align the robot motion with
the verbal speech in the human-robot interaction;

3) Extensive human experiments that validate the controller
and demonstrate its ability to align the pace of the robot
motion with its speech.

III. RELATED WORK

A. Language Grounding for Robot Instructions

Prior work has focused on grounding natural language
instructions to enable robots to follow commands, including
techniques for mapping instructions to internal representations
and actions [11]–[13]. These approaches aim to enable robots
to understand and execute natural language commands by
grounding them in the robot’s perceptual and action spaces.
However, these methods primarily focus on one-way com-
munication, where the human provides instructions and the
robot follows them, without considering real-time feedback or
adaptation.

B. Language and Motion Integration

Building upon language grounding, recent works have com-
bined language understanding with robotic planning and con-
trol to enable more seamless integration of verbal instructions
and physical actions. This includes mapping commands to
executable specifications [14], [15] and leveraging implicit
information to improve plan execution [16], [17]. These ap-
proaches demonstrate the potential for integrating language
and motion in robotic systems, allowing robots to interpret
and execute natural language instructions more effectively.

C. Bidirectional Communication and Adaptation

While the aforementioned works focus on integrating lan-
guage and motion, they primarily consider one-way com-
munication from the human to the robot. To achieve more
natural and fluent human-robot collaboration, bidirectional
communication and adaptation based on real-time feedback
are necessary. This involves not only grounding language in
the robot’s actions but also adjusting the robot’s behavior and
communication based on the human’s responses and actions.
Efforts in this direction include techniques for collaborative
grounding of language between humans and robots for situated
dialog and interactions [18], [19].

These approaches emphasize the importance of mutual
understanding and real-time adaptation in human-robot col-
laboration. However, integrating robot physical motions and
speech grounded in real-time human responses still remains
an open problem. Our work aims to address this gap by
developing a control framework that coordinates motions and
utterances grounded in human responses, enabling bidirec-
tional communication and adaptation in physical human-robot
collaboration.

D. Variable Impedance and Admittance Control

Research has explored variable impedance and admittance
control for safer and adaptive human-robot interaction, includ-
ing dynamic modulation based on cooperation [20], adaptive
admittance using EEG feedback [21], and online impedance
variation for performance/safety trade-offs [22]. We incorpo-
rate admittance methods for compliant motion, but extend
standard admittance frameworks by explicitly coupling the
modulation of control parameters to the speech state. This ties
motion control to verbal communication.



Fig. 1: Physical therapist is seen performing ’shoulder external
rotation’ therapy on to the patient with varying levels of
physical resistance. The physical motions and speech data was
recorded across different sessions.2

IV. PRINCIPLES AND CONTROL OBJECTIVES

Through the observational study of therapist-patient ex-
ercises at Spaulding Rehabilitation Hospital (Fig. 1), we
identified the following core principles:

• The therapist planned the trajectories for each session,
demonstrating the path before starting an exercise;

• The therapist adapted the pace of motions based on
patient responses. When the patient struggled, she slowed
down and gently guided them along the trajectory;

• The therapist aligned her speech with physical actions.
She began verbal guidance at the start of motions and
finished speaking around the end;

• Her speech rate and sentence length correlated with her
physical motion speed - slower motions had slower,
longer speech; faster motions had faster, shorter speech.

We derived the following formal control objectives from
these principles. The robot must:

1) Guide the user through a predefined trajectory while
modulating its velocity in response to user cooperation.
High cooperation (low resistance) must lead to faster
motion and Low cooperation (high resistance) must lead
to slower motion;

2) Control the pace of its speech to maximize the align-
ment with its motion while adapting to varying user
cooperation. We formalize alignment as a monotonic
relationship between speech and motion duration (see
Sec. V-C).

3) Paraphrase (choice of words) its speech dynamically
along the trajectory, adapting to changing user cooper-
ation. It must use shorter sentences under faster motion
and longer sentences under slower motion.

Building upon the outlined control objectives, we formalize
the Language-Grounded Motion Controller.

2Detailed therapy sessions videos can be seen at https://language-playback-
robot-controller.github.io/therapy-sessions/

V. LANGUAGE-GROUNDED MOTION
CONTROLLER

A. Overview
Language-Grounded Motion Controller (Fig. 2) employs

variable admittance control for robot motion and modulates
the pace of motion and speech to maximize the alignment. The
controller is designed to align the motion of the robot with its
speech. It does so by updating “Physical Pace” and “Audio
Pace” from estimated time-to-completions for both the robot’s
trajectory and its speech. The controller dynamically updates
the paces based on real-time user response. Furthermore, the
controller incorporates adaptive paraphrasing to modulate the
speech content. It traverses a phrase graph representation to
select appropriate wording and phrase length that matches
the ideal duration of speech corresponding to the expected
duration of motion (Fig. 3).

B. Admittance Model
Admittance and Impedance Control are the two primary

control schemes used in human-robot interactions [23], [24].
Humans actively control their limbs and resist unexpected
movements, which positions humans as an impedance, neces-
sitating robots to be treated as an admittance. We thus use
Admittance Control, which converts external force Fext into
desired velocity vref via a virtual dynamics model:

M0v̇ref +D0vref = Fext. (1)

where vref is the desired velocity. To lead the user through a
predefined trajectory T , we extend the virtual dynamics model
above with a virtual force Fvirtual,

M0v̇ref +D0vref = Fext + Fvirtual. (2)

Fvirtual is dependent on the end effector position x and its
closest point on the trajectory (xd), defined as follows,

xd = T (d), where d = argmin0≤d≤1∥T (d)− x∥, (3)

where we see the trajectory T as a directed curve [0, 1] 7→ S
where S is the state space. Fvirtual consists of two parts:

Fvirtual = K(xd − x)︸ ︷︷ ︸
Fguide

+ ∥Fpropell∥b︸ ︷︷ ︸
Fpropell

, (4)

where b = lim
d′→d+

T (d′)− xd

∥T (d′)− xd∥
, (5)

where Fguide leads the user back on track if they deviate and
Fpropell leads the user to complete the trajectory. This achieves
our first objective that our robot should lead the user through
the trajectory. In frequency domain, (2) can be expressed as

vref = A · (Fext + Fvirtual) where A =
1

M0s+D0
. (6)

We elaborate in Sec. V-E how to vary A with Physical Pace
p to tune the behavior of this admittance model.

The virtual admittance model produces vref that is fed to the
velocity controller C, which produces a driving force Fdrive
with actuators. The equation of motion of our robot is:

Mrobotẍ = Fext + Fdrive = Fext + C(vref − ẋ). (7)

https://language-playback-robot-controller.github.io/therapy-sessions/
https://language-playback-robot-controller.github.io/therapy-sessions/


Virtual dynamics

Velocity control
Robot dynamics

User cooperation estimator
Audio-motion aligner
Motion time-to-complete estimator
Speech (phrasing digraph +
phase vocoder)
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Audio pace
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Estimated time-to-
complete (motion)
Estimated time-to-
complete (audio)

Variable Admittance Controller

Virtual (trajectory) force model

External force

Virtual force
Driving force

Desired (reference) velocity

Fig. 2: Control scheme of Language-Grounded Motion Controller
. External force Fext (from user) and virtual force Fvirtual (based on position to guide user through a predefined trajectory) are

passed to the virtual dynamics Yv to generate reference velocity vref for velocity controller C. C outputs a force that,
together with Fext, acts on robot dynamics Yr. The resulting motion is given by ẋ. Motion time-to-completion estimator S
uses ẋ to estimate the time-to-completion (ETC) of the trajectory t̂x. Speech module G reports an ETC of the speech, t̂a,

and cooperation model Yc computes cooperation c from Fext. t̂x, t̂a and c are fed to audio-motion aligner A to update
Physical Pace p and Audio Pace a. Physical Pace p changes the pace of the robot’s motion by varying Yv’s parameters.

Audio Pace a changes the pace of audio through a phase vocoder in G.

I want you to

Move your
arm

Back

Towards your
Body

Moving it

Retract your
arm

Fig. 3: Example phrasing graph for our experiments where
users were asked to retract their arms. Paths ending at red
nodes represent different phrasings of the instruction, e.g., “I
want you to retract your arm” (short) or “I want you to move
your arm back towards your body.” (long)

C. Defining Audio-motion Alignment

As was stated in IV, we observed from the demonstrative
therapy sessions that the therapist began verbal guidance at
the start of the motions and finished speaking around the end.
Consequently, longer and slower motion is accompanied by
longer and slower speech and vice versa. Formally, the ideal
duration of the speech, ta, is an increasing function of the
duration of the motion, tx,

ta = f(tx), where f ′(·) > 0. (8)

We refer to the model f that correlates the two durations as
the alignment model. f can vary between different contexts.

In this demonstration, since we observed from the therapy
videos that the speech guidance is approximately as long as the
motion itself, we set f as the identity function for simplicity
and defer formulations of more accurate fs to future research.

D. Parameters

Aligning the robot’s motion and its speech requires us to
be able to control their pace. In our controller, this is done by
varying the Audio Pace a and the Physical Pace p.

Audio Pace (a) is the pace at which the robot’s speech
is played. E.g., a = 1.2 means the audio is played 20%
faster than normal and a = 0.8 means playing 20% slower.
We pass a to a Phase Vocoder [25] which time-scales the
prerecorded speech audio with Short-time Fourier Transform.
We empirically constrain a ∈ (0.6, 1.4) to avoid incongruity
arising from over-stretching or shrinking of the speech audio.

Physical Pace (p) is a variable in our admittance controller.
It can be thought of as a “speed knob” with which we vary
the controller. We design p to achieve the following effect:
assuming constant Fext, p = 1.2 should cause our controller to
complete a trajectory in 20% less time than a fixed admittance
controller following (2) and likewise p = 0.8 should cause it
to run 20% slower. We empirically constrain p ∈ (0.6, 1.4)
so the admittance parameters do not deviate too much from
their base values. Physical Pace (p) must not be confused
with end effector velocity. The role of p is not to directly
modulate velocity, but to adjust the admittance parameters.
This ensures that the controller operates within the safety
and compliance boundaries set by the admittance control



framework. Directly multiplying the end effector velocity by
p could lead to unsafe conditions, as it would bypass these
regulatory mechanisms. Therefore, p should be understood as
a rate constant that modifies the admittance parameters to
indirectly influence end effector velocity, maintaining safety
and compliance even under varying external forces. The formal
definition of Physical Pace p is in V-E.

Estimated time-to-complete (ETC) for audio and speech
We define alignment of motion and speech by relating the
duration of the two. Therefore, to modulate the paces, our
controller naturally needs to continuously estimate these du-
rations, or, since the start time is known, when the motion
and speech will end. Concretely, our controller computes the
ETC for audio (t̂a) and motion (t̂x). t̂a and t̂x are computed
3 under base pace a = p = 14.

Computing Paces p and a We compute the ideal paces, p∗

and a∗, from the following optimization:

minimize (p−pnatural)
2+(a−anatural)

2, s.t.
t̂a
a

= f
( t̂x
p

)
, (9)

where we set pnatural = anatural = 1. t̂x/p and t̂a/a are the ETC
for motion and audio considering the current pace, connected
with the alignment model f . When f is the identity function,
the solution to (9) is

p∗ =
s+ 1

s2 + 1
, a∗ =

s2 + s

s2 + 1
where s =

t̂x

t̂a
. (10)

We further update p and a following the equation below:

ṗ = kp(p
∗ − p), ȧ = ka(a

∗ − a). (11)

This control equation makes both paces converge exponen-
tially to their optimal values5.

User Cooperation We define Cooperation (0 < c < 1) as

c(t) = 1−
∫ t

0

αt−τ ∥Fext∥
∥F∥max

dτ, (12)

where ∥F∥max is the maximum magnitude of resisting force
and α is the decay factor. In practice, we apply a deadband
filter to Fext first to filter out sensor noises and friction.

We then extend (11) to

ṗ = kp(p
∗ − p), ȧ = ka(a

∗ − a)− kc(1− c). (13)

This allows our controller to slow down the speech when the
user does not cooperate (high resistance) and resume ideal
speech pace when the user fully cooperates (low resistance).
(13) achieves our second objective that the robot’s motion and
audio must be aligned under varying user cooperation.

3 t̂a is computed as the sum of audio length on a path constructed by
repeated use of (21) from the current vertex in the phrasing graph (minus the
duration played for the current audio ). t̂x is computed assuming Fext = 0
(i.e., fully cooperative user) with simulation of (7) at 500Hz.

4Both paces are defined relative to a base pace of 1. a = 1 means the
audio is played at the recorded rate (free of distortions); p = 1 means the
trajectory is being run with the default / intended admittance parameters. We
consider 1 to be the most natural/ideal pace.

5We do not directly set p = p∗ and a = a∗, which could lead to abrupt
change of pace if p∗ and a∗ deviate from current values too much.

E. Varying Admittance Model with Physical Pace p

We now give a formal definition of the Physical Pace p
and integrate it into the virtual dynamics defined in (2). Let
v∗ref(t) be the reference velocity generated by an admittance
controller per (2) (without p), and let vref(t) be the reference
velocity from our controller (with pace p). Assuming fixed
(Fext + Fvirtual), we want

vref(t) = pv∗ref(pt) (14)

which, after integrating both sides, implies that a controller
with pace p would reach a reference position in 1/p the time of
a controller without p. E.g., when p = 2, a controller without
p would take twice amount the time to reach the same position
as a controller with p. More generally, pace p varies with time.
Let pt be the pace at time t, we want

vref(t) = ptv
∗
ref(Φ), where Φ =

∫ t

0
pτ dτ. (15)

Here time Φ generalizes pt for time-varying p in (14). The
assumption of fixed (Fext +Fvirtual) in the definition is critical:
p generally is not a scale factor to the end effector velocity but
instead modulates the admittance parameters. This approach
is safer as p effects the velocity only indirectly through the
admittance model, which ensures the safety and compliance
of our controller under varying forces.

We achieve (15) with the variable admittance model:

vref = A(pt) · (Fext + Fvirtual), (16)

where A(pt) =
1

1
p2
t
M0s+

1
pt
D0 − ṗt

p3
t
M0

. (17)

Proof: Differentiate (15) & multiply both sides by M0,

M0v̇ref(t) = p2tM0v̇
∗
ref(Φ) + ṗtM0v

∗
ref(Φ). (18)

Expanding M0v̇
∗
ref(t) by (2),

M0v̇ref(t) = p2t (Fext + Fvirtual)− p2tD0v
∗
ref(Φ) + ṗtM0v

∗
ref(Φ).

Substitute v∗ref(Φ) = vref(t)/pt by (15),

M0v̇ref(t) = p2t (Fext + Fvirtual)− (ptD0 − ṗt

pt
M0)vref. (19)

whose simplification then leads to (17).

E. Passivity Guarantees

We show that our controller defined in (17) is passive. A
passive system is a system that is constrained in such a way
that it does not inject excessive energy or instability into the
interaction [26]. Formally, a system is passive w.r.t. an input-
output pair (u(t), y(t)) if and only if there exists a positive
definite storage function V over the system such that:

V (t)− V (0) ≤
∫ t

0

u(t)T · y(t)dt ∀t > 0 (20)

Theorem 1: Consider a controller of the form outlined in
(17) operating with linear trajectory T . If K is orthogonal
and positive definite, D0 is positive definite, and p is lower-
bounded by a positive value, then the system is passive with
respect to the force-velocity (Fext, vref) input-output pair.
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Fig. 4: A user participant is seen interacting with the UR5 robot on a desired trajectory, which was inspired by the therapy
session (“shoulder external rotation”) and predefined in our controller.6 The reference trajectory for this motion was predefined.
As evident in the figure, the user sits beside the robot and places their hand on the table surface, while the robot end-effector
guides the user’s arm through the planned trajectory.

(Proof provided in the Supplementary.)

F. Adaptively Paraphrasing the Robot Speech

To enable the robot to dynamically paraphrase its speech
so the speech length matches that of the robot’s motion (our
third objective), we represent of speech as a phrasing graph.
A phrasing graph is a Directed Acyclic Graph (DAG) where
vertices denote sequences of words or phrases and a directed
edge from vertex u to v denotes that the v’s phrase could
follow u’s in speech. Phrasing graph captures the various
alternative ways to express similar meanings (see Fig. 3).

When the controller finishes saying the phrase on a vertex,
it chooses the next vertex/phrase based on how long it expects
the trajectory to last. Formally, it does so by choosing a next
vertex u from the graph, such that:

u = argmin
next node u

∣∣∣∣t̂x − t̂min(u) + t̂max(u)

2

∣∣∣∣ (21)

where t̂x is the expected time-to-completion (ETC) of the tra-
jectory (V-D). tmin(u), tmax(u) are the minimum & maximum
time-to-completion of speeches starting at vertex u8. We use
the average of tmin(u) and tmax(u) as an efficient heuristic to
increase the freedom of choices in subsequent vertex-selection
steps: assuming the length of the speech starting at a node
follows a balanced distribution, choosing the node with the
closest min-max average to t̂x reserves the flexibility for the
algorithm rephrase in the future no matter in which direction
t̂x changes by then.

We remark that (a) (21) causes the controller to select longer
paraphrases when the user resists more. Higher resistance
slows the motion, increasing trajectory time t̂x. (b) the graph

6Results for all the users are available in our online appendix https:
//language-playback-robot-controller.github.io/user-sessions/.

7Step-like patterns for t̂a around t = 5 and t = 7 is due to minor
imperfection in our audio code when transitioning between different phrases
at the time of the study. The steps should be lines of the same slope as the
immediately preceding line and don’t affect the correctness of our analysis.

8tmin(u) and tmax(u) are pre-computed by storing at each vertex the
expected time to say its phrase, and iterating in reverse topological order.

traversal does not depend on a or p to avoid compound
effects9.

In the current implementation, the phrase graph was man-
ually constructed based on the therapist’s speech during the
demonstration sessions. While this approach allows for a con-
trolled representation of the therapist’s speech patterns, future
work could explore the use of Large Language Models (LLMs)
in place of the manually constructed phrase graph. LLMs
could potentially generate appropriate phrases dynamically
based on a given intent and desired length or complexity.
This could be achieved by conditioning the LLM on a length
parameter or selecting from multiple candidate phrases.

VI. EXPERIMENTATION

A. User Study

The user study included 12 participants (7 males, 5 females)
with a mean age of 23 years. The study procedures and
protocol were reviewed and approved by the Institutional
Review Board (IRB Protocol #2212000845R001), ensuring we
followed ethical guidelines for human subject research. The
UR5 robot [1] guided users through a predefined trajectory
demonstrated by the therapist. Users sat beside the robot,
placed their hand on the desk. The robot guided their hand
along the trajectory with speech instructions while users varied
resistance arbitrarily. Sessions last for 15 seconds on average.

B. Control Schemes Evaluated and Compared

1) Admittance Controller with Decoupled Audio (AC):
Our baseline is a pure admittance controller with dynam-
ics of (2). The audio is a single prerecorded audio file
that starts simultaneously with the trajectory. Physical
and Audio Paces are not modulated at all.

2) Language-Grounded Motion Controller without
Adaptive Paraphrasing (LC-noAP): Our controller but
without the ability to adaptively paraphrase the speech.

9If we consider p here, i.e., we choose next vertex v that minimizes |t̂x/p−
. . . | instead of |t̂x − . . . |, a brief episode of low p induces a longer speech
which requires even lower p to align – a vicious cycle.

https://language-playback-robot-controller.github.io/user-sessions/
https://language-playback-robot-controller.github.io/user-sessions/
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Fig. 5: (FIGURE REVISED: finer granularity x ticks and x grid lines per reviewer comment)
States and metrics of our controller from a single user session through a predefined intended trajectory. At t = 3 (red shaded
timespan), cooperation dropped, causing end effector speed to decrease. This shows that our motion controller is compliant.
Audio pace also dropped and returned back up at t = 4, which shows our controller adapts the pace of the robot’s speech to
changing user cooperation. Throughout the session, our controller kept the estimated time-to-completion (ETC) of speech and
trajectory close (the estimated misalignment is around 0). This demonstrates that our controller successfully aligns the robot’s

speech with its motion. Around t = 7, ETC for trajectory t̂x dropped, making the controller select a shorter path on the
phrasing graph, as shown by an abrupt drop in t̂a. However, the temporary dip in t̂x was caused by inaccuracies of

estimation, so the controller reverted to its original planned next phrase shortly after. As cooperation increased around t = 9,
the controller eventually paraphrased and chose the shorter path. The paraphrase shortened the ETC to less than the

trajectory, so the controller re-aligns by reducing audio pace and increasing physical pace. Overall, this demonstrates that our
controller is able to align the robot’s speech with its motion while adapting to changing user cooperation.6 7

Note: the step-like pattern for t̂a at around t = 5 and t = 7 are due to a minor imperfection in our audio player when transitioning between audio fragments
of different phrases at the time of the study. The steps should be viewed as lines of the same slope as the immediate preceding line and does not affect the
correctness of our analysis.

3) Language-Grounded Motion Controller (LC): Our
controller with adaptive paraphrasing by traversing a
phrase graph (V-F).

C. Evaluation Metrics

1) Cooperation (c), defined in (12), quantifies user coop-
eration. c should not significantly vary between control
schemes. In particular, our controller must not induce
lower cooperation than the baseline.

2) Audio Pace (a) is the speed at which we deliver the
speech audio. An audio rate of 1.2 indicates that we are
playing the audio at 120% of its normal speed and 0.8
indicates playing at 80% of its normal speed. A pace
closer to 1 implies less distortion from audio processing
and more natural speech.

3) Physical Pace (p) is the state variable through which
we vary the admittance parameters of our controller. p
closer to 1 implies the robot operating closer to its most
natural admittance parameters. Always 1 for AC.

4) Actual Misalignment is defined as the difference be-
tween the audio and motion durations, adjusted with the
alignment model f . A positive value indicates the audio
is longer than what would be ideal for the duration of the
motion; A negative value indicates otherwise. A smaller
absolute value suggests better audio-motion alignment.

5) Estimated Misalignment (EM = t̂a−f
(
t̂x)) is the real-

time estimate of Actual Misalignment (AM). A smaller
absolute value suggests better audio-motion alignment;
EM differs from AM in that EM is a time series
computed throughout the session whereas the AM is a
scalar obtained after the session ends.

Of these metrics, Actual Misalignment is a single value per
session, while the rest come in time series.

Videos demonstrating and comparing the different con-
trol schemes (AC, LC-noAP, and LC) in action can be
found at: https://language-playback-robot-controller.github.io/
user-sessions

https://language-playback-robot-controller.github.io/user-sessions
https://language-playback-robot-controller.github.io/user-sessions
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Fig. 6: Violin plot of the distributions of metrics for 3 controllers across all 12 user sessions. Blue bars indicate min, median,
and max of a distribution. Consistent distributions of cooperation for all controllers show that all controllers deliver similar
physical experience to the users; On this ground, LC exhibits less audio-motion misalignment (both actual and predicted) than
LC-noAR which exhibits significantly less variation in misalignment than the AC baseline. Adaptive paraphrasing allows LC
to maintain a more natural speed of speech most of the time than LC-noAR, as shown by a more concentrated peak around
the default rate of 1 in audio rate distribution. Overall, LC best aligns the robot’s speech with motion6.

D. Analysis of Language-Grounded Motion Controller
on a User Session
We analyze our controller’s behavior for one of the user ses-

sions in Fig. 5 and present a deep dive analysis. Around t = 3,
cooperation dropped, slowing end effector speed. Audio pace
dropped then recovered, aligning with motion. Throughout,
estimated time to completion (ETC) of speech and trajectory
were kept close, showing speech-motion alignment. Around
t = 7, a temporary inaccurate ETC drop caused paraphrasing
to a shorter phrase path, which was committed once resistance
dropped around t = 9. We also observe a clear correlation
between the audio rate a and the cooperation c, which proves
that our controller slows down its speech to synchronize with
the slower motion of the robot as we desired.

Overall, Language-Grounded Motion Controller adapts
speech pace to follow motion changes from user cooperation
variations, while paraphrasing aligns speech ETC to trajectory
ETC.

E. Comparing Controllers across User Sessions
We compare all three control schemes across all users and

present the results in Fig. 6. The level of user cooperation
was similar across controllers, with no notable differences
observed initially. This implies that all users exhibited similar
physical motion irrespective of controllers, supporting our
prior hypothesis that alignment of robot’s motion and language
can be achieved while keeping users’ physical interactions un-
changed. AC exhibited broad misalignment (-4 to 3 seconds).
Given short session length, this indicates notable lack of align-
ment. Adding pace control (LC-noAP) reduced misalignment,
and adaptive paraphrasing (LC) further improved to under 1
second. Both LC finish speech after motion. LC controllers
showed bimodal audio pace distribution - a peak around base
rate 1, another at lower end – corresponding to two behaviors:
slowing speech during high resistance to align with slower mo-
tion, and aiming for natural rate without/low resistance. LC has
more concentrated peak at 1, as adaptive paraphrasing matches
speech content length to motion, enabling natural rate delivery.

We remark that the distribution of estimated misalignment
for LC is irregular. We attribute this irregularity to adaptive
paraphrasing, where the controller often updates the estimated
time-to-completion for audio, t̂a, in a discrete manner owing
to the naturally discrete distributions of sentence lengths on
the phrasing graph

The experiments show that our controller met all of our
defined objectives. It guided the users through the intended
trajectory while adapting to the changing user resistance, and
it controlled the pace and content of the robot’s speech to
maximize its alignment with the robot’s motion.

VII. DISCUSSION

While our study primarily focused on quantitative metrics
to assess the Language-Grounded Motion Controller (LC)
effectiveness in aligning speech and motion, we recognize the
crucial role of qualitative user feedback in evaluating the real-
world impact and user experience of the system. To gain a
more comprehensive understanding of how users perceived
the different control schemes, we collected their thoughts and
impressions after interacting with each controller.

A. User Preference for Language-Grounded Motion Con-
troller

In general, participants expressed a preference for the
Language-Grounded Motion Controller (LC) over the other
two control schemes - Language-Grounded Motion Controller
without Adaptive Paraphrasing (LC-noAP) and Admittance
Controller with Decoupled Audio (AC). Several participants
noted that the speech felt more natural and in-sync with their
motions when interacting with LC compared to the other
controllers.

B. Issues with Decoupled Audio and Non-Adaptive Con-
trollers

With the AC condition, multiple users commented that the
decoupled, fixed-pace audio felt jarring and disconnected from
their physical interaction with the robot. The audio playback



did not adapt at all to their movement speed or level of
cooperation, making the overall interaction feel uncoordinated.
User 2 pointed out, ”With the first controller [AC], it didn’t
matter how much I resisted or cooperated with the robot - the
voice just kept going at the same pace. It was like the robot
wasn’t paying attention to what I was doing.”

Participants noticed an improvement with LC-noAP, men-
tioning that the robot seemed more responsive as it slowed
down its speech when they provided resistance. However,
some still pointed out occasional mismatches, especially fin-
ishing the verbal instructions while the physical guidance was
still ongoing. User 6 mentioned, ”I noticed a difference with
the second one [LC-noAP]. When I provided more resistance,
the robot slowed down its speech. But the phrases still seemed
a bit off sometimes, like it was trying to squeeze in too many
words.”

C. Benefits of Adaptive Paraphrasing

The Language-Grounded Motion Controller (LC) scheme
with adaptive paraphrasing capabilities garnered the most
positive feedback. User 9 shared, ”The last controller [LC]
felt the most responsive to my actions. If I resisted more, the
robot would not only slow down its speech but also choose
longer, detailed phrases. When I cooperated and let it guide
me smoothly, it used shorter, simpler instructions. It really
felt like it was adapting to my level of cooperation.” While a
couple participants, like User 11, noticed minor glitches in the
audio when quickly changing resistance levels, stating, ”I did
catch a couple slight glitches in the audio with the adaptive
version [LC] when I quickly changed from resisting harder to
lower, but overall it was pretty smooth,” the majority found
the robot’s choice of words matched their actions well.

D. Alignment with Quantitative Results and Future Directions

These qualitative observations align with our quantitative
results showing LC exhibited the least audio-motion misalign-
ment. The adaptive paraphrasing allowed the robot to modulate
its choice of words to more closely match the expected motion
duration. Combined with the pace modulation, this led to
a more natural and coordinated interaction from the user’s
perspective compared to the baseline approaches.

In future work, it would be valuable to conduct a more struc-
tured qualitative assessment, potentially having users directly
compare and rate their experience with each control scheme
along dimensions such as perceived naturalness, responsive-
ness, and overall interaction quality. User feedback can provide
additional insights to further refine the language grounding
and paraphrasing components of the controller. Investigating
approaches to smooth the audio transitions during paraphrase
changes could also help minimize any perceived oddities in
the synthesized speech.

VIII. LIMITATIONS

We list below the limitations of our approach, which can
provide insights to future investigations:

1) We employed variable admittance controller for mo-
tion control. While the idea should generalize to other
controllers, we have not experimented coupling our
language control scheme with other motion controllers.

2) We proposed a general concept of speech-motion align-
ment where the durations of the two are linked with
a monotonic function f . For simplicity, we set f as
the identity function in this paper as it matches our
empirical observations under the particular evaluation
scenario. Further research should develop a more general
and accurate alignment model.

3) We observe that in some of the therapy videos, the
therapist varied the duration of her speech with the
insertion of pauses and filler words. Our model does not
implement this behavior, but in theory, it can be incorpo-
rated into our model by adding appropriate filler/pause
nodes in our phrase digraph.

4) For richer interactions, large language models could au-
tomatically create phrasing graphs, beyond our therapist-
recorded interactions;

5) Our controller assumes prerecorded audio phrases. An
extension is using text-to-speech to generate audio from
the phrases;

6) Formalized for physical therapy, Language-Grounded
Motion Controller principles can be extend to man-
ufacturing, with robots assisting in lifting, handling,
and assembly; and space exploration, helping astronauts
recover from falls.

7) Using TTS model also opens up more possibilities of
speech modulation as many TTS models have config-
urable parameters such as speed and tone.

IX. CONCLUSION

We present a Language-Grounded Motion Controller to
align a robot’s physical motions and verbal utterances during
collaborative tasks with humans. The controller was inspired
by analyzing physical therapist interactions with patients. We
identified key principles of adaptive pacing, aligned timing,
and correlation between speech complexity and motion pace.
These principles were formalized into control objectives to
guide users through trajectories.

The Language-Grounded Motion Controller employed a
variable admittance controller to enable compliant trajectory
following. The pace of speech delivery was modulated via a
phase vocoder to match the speed of motion and paraphrasing
was incorporated through a phrase directed graph traversal in
order to align the length of verbal content with the trajectory.
Experiments with 12 users validated the advantages of our
approach over baseline methods.

Directions for future work include expanding the con-
troller’s language capabilities using large pre-trained models,
applying it to diverse assistive tasks in areas like manufac-
turing, where robots work alongside humans in assembly;
healthcare, where robots assist nurses with patient handling;
and space exploration, where astronaut-robot teams assist from
fall recovery and scientific explorations.
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